
2023-06-24

1

Performance and Scalability
of Datastore Technologies for

Software Analysis Models

Kanishqk Singh and Robert J. Walker

University of Calgary

Calgary,Canada

ACCSE 2023

1

2023-06-24

2

Software Systems Change over Time

• Real-world software systems are ...

• large

• developed over time

• subject to changing business and technical environments

• developed by changing groups of developers

• In principle, developers need only a text editor to make changes

ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models 2

2

2023-06-24

3

Software Development & Analysis Tools (SDATs)

• In practice, specialized tools (SDATs) are needed to ...

• analyze potential changes

• make actual changes

• catch errors arising from incomplete or incorrect changes

• SDATs usually build atop analysis-oriented models of the software

• abstract syntax trees (ASTs)

• control-flow graphs

• type hierarchies

• call graphs

• ...

3ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models

3

2023-06-24

4

Size versus cost

• Computing any such model has a cost

• Small software: typically, low cost

• Large software: typically, high cost

• e.g., system dependence graphs can take days to compute for enterprise-scale
software

• When software undergoes changes, its models become obsolete

• Model update can be complex, error-prone, and still expensive

• Model re-computation has the same cost as the original

• Since real software undergoes change constantly, its models can be
obsolete before they are fully re-computed

4ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models

4

2023-06-24

5

Caching versus Re-computation

• When the software system is re-started, we can ...

• recompute its models, paying the same cost as originally done

• reload a cached version of its models from offline storage

• perform a combination of these

• For caching & reloading, there are several sources of cost:

• communicating with an offline storage system

• writing to an external storage medium

• reading from the external storage medium

• communicating with the offline storage system

• Reloading a cached version may or may not be cheaper than re-computation!

5

caching

reloading

ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models

size & complexity of models,
details of storage technology

5

2023-06-24

6

Dimensions of Consideration

• Datastore technologies

• Flat files: simple text; comma-separated values (CSV); JSON

• Relational database management systems: e.g., MySQL, PostgreSQL, etc.

• Non-relational database systems: NoSQL; graph databases (e.g., Neo4j); cloud storage
(e.g., Google Cloud)

• Datasets

• Academic studies tend to utilize toy datasets, constructed from random graphs

• Non-academic studies tend to suffer from potential bias

• Use cases

• SDATs use graphs, so graph-based operations should be studied

6ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models

6

2023-06-24

7

Our Study (1/4)

• Research question: How do different database technologies perform on realistic
operations over realistic software analysis models?

• Many details in the paper

7ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models

7

2023-06-24

8

Our Study (2/4)

• The technologies we chose to examine:

• CSV files via the Python-based NetworkX library

• MySQL

• PostgreSQL

• Neo4j

8ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models

8

2023-06-24

9

Our Study (3/4)

• We generate nine scale-free graphs via the Barabási–Albert model

• linear preferential attachment model (“the rich get richer”)

• probability of adding an edge with a node is proportional to local degree of connectivity

• two dimensions

• #nodes: 100, 1 000, and 10 000

• density: 2%, 10 %, 25%

• We used a custom Python implementation based on the NetworkX library to
generate these

9ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models

9

2023-06-24

10

Our Study (4/4)

• We examine 8 use cases

• (UC1) Create/store a graph

• (UC2) Read/access a graph

• (UC3) Add a node

• (UC4) Add an edge

• (UC5) Rename an edge

• (UC6) Change source and target nodes of an edge

• (UC7) Delete a node

• (UC8) Delete an edge

10ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models

10

2023-06-24

11

UC1: Create/Store a Graph

ACCSE 2023Performance and Scalability of Datastore Technologies for Software Analysis Models 11

11

2023-06-24

12

UC2: Read/Access a Graph

ACCSE 2023Performance and Scalability of Datastore Technologies for Software Analysis Models 12

12

2023-06-24

13

UC3: Create a Node without Edges

ACCSE 2023Performance and Scalability of Datastore Technologies for Software Analysis Models 13

13

2023-06-24

14

UC4: Create an Edge between Existing Nodes

ACCSE 2023Performance and Scalability of Datastore Technologies for Software Analysis Models 14

14

2023-06-24

15

UC5: Rename a Node

ACCSE 2023Performance and Scalability of Datastore Technologies for Software Analysis Models 15

15

2023-06-24

16

UC6: Change Source & Target Nodes
of an Edge

ACCSE 2023Performance and Scalability of Datastore Technologies for Software Analysis Models 16

16

2023-06-24

17

UC7: Delete a Node and
Its Corresponding Edges

ACCSE 2023Performance and Scalability of Datastore Technologies for Software Analysis Models 17

17

2023-06-24

18

UC8: Delete a Specific Edge

ACCSE 2023Performance and Scalability of Datastore Technologies for Software Analysis Models 18

18

2023-06-24

19

Conclusions

• For creating/storing a graph, Python-CSV is the clear winner

• For reading a graph, PostgreSQL is the best option for large graphs

• For the other 6 use cases, Neo4j is the best option for large graphs

• The correct choice would depend on the profile of the application

• HOWEVER...

• This study did not consider the cost of the connector technology needed for programmatic
access to core-memory representations; this can be EXPENSIVE

• A far simpler approach, like object serialization, could suffice for caching/reloading where
external manipulation of the graphs is not needed

• Additional study is needed to determine the comparative, full costs for both issues

ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models 19

19

2023-06-24

20

THANK YOU
Prof. Robert J. Walker, walker@ucalgary.ca

ACCSE 2023Performance and Scalability of Datastore Technologies for Software Analysis Models 20

20

	Slide 1: Performance and Scalability of Datastore Technologies for Software Analysis Models
	Slide 2: Software Systems Change over Time
	Slide 3: Software Development & Analysis Tools (SDATs)
	Slide 4: Size versus cost
	Slide 5: Caching versus Re-computation
	Slide 6: Dimensions of Consideration
	Slide 7: Our Study (1/4)
	Slide 8: Our Study (2/4)
	Slide 9: Our Study (3/4)
	Slide 10: Our Study (4/4)
	Slide 11: UC1: Create/Store a Graph
	Slide 12: UC2: Read/Access a Graph
	Slide 13: UC3: Create a Node without Edges
	Slide 14: UC4: Create an Edge between Existing Nodes
	Slide 15: UC5: Rename a Node
	Slide 16: UC6: Change Source & Target Nodes of an Edge
	Slide 17: UC7: Delete a Node and Its Corresponding Edges
	Slide 18: UC8: Delete a Specific Edge
	Slide 19: Conclusions
	Slide 20: THANK YOU

