A Multi-UAS Simulator for High Density Air Traffic Scenarios

Authors

- David Martín-Lammerding
- José Javier Astrain
- Alberto Córdoba

Presenter

David Martín-Lammerding

Department of Stats. Comput. Sci. Math

Public University of Navarre (UPNA)

david.martin@unavarra.es

Resume

Telecommunications Engineer, 2000, at the Public University of Navarre.

Specialized in computer security and digital identity projects. I have developed my professional activities in different companies and sectors for more than 20 years.

My research work is focused on ontology-based autonomous systems and how to apply it to unmanned aircraft (UAS).

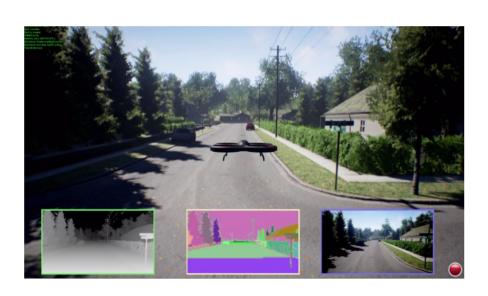
Introduction

- Unmanned Aerial Systems (UAS) traffic increase
- Safety risk
- Different Collision Avoidance Systems (CAS)
- Incidents with UAS, collisions.

Challenges

- How to improve UASs flight security?
- How to verify CAS response time?
- How to simulate UAS traffic safely?
- How to reduce time-to-market of UAS subsystems?

Related Work

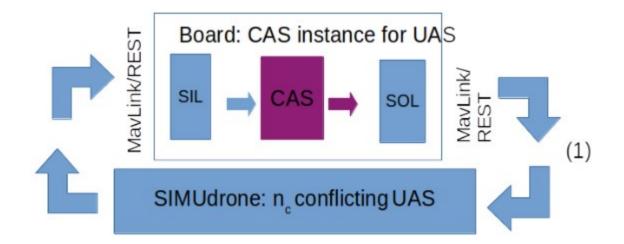

- Aircraft and UAS simulators lacks configuration flexibility
- Limited conflict and scenario generation
- Hardware In the Loop simulation are a separate process, not integrated

Related Work

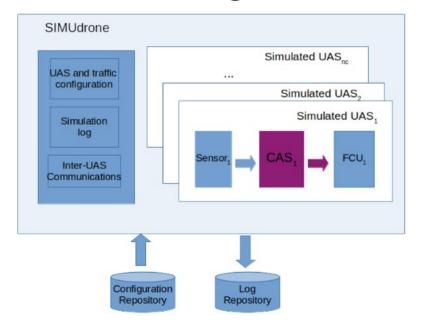
Simulators of one UAS based on 3D engines

Contribution

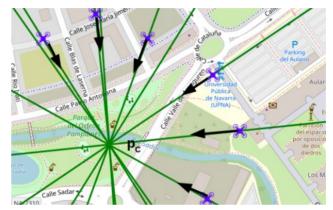
- A novel UAS simulator, SIMUdrone, for dense traffic areas.
- Conflict configuration flexibility
- Reduce time to market, as SIMUdrone integrates HIL.

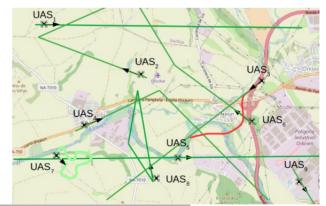


- SIMUdrone modes
 - HIL mode: an external connected embedded board runs an implementation of an UAS sub-system, like a CAS.
 - Integrated-conflict mode: multiple conflicting equipped UAS are modelled


Architecture HIL mode:

Architecture of the integrated-conflict mode





Conflict scenarios available:

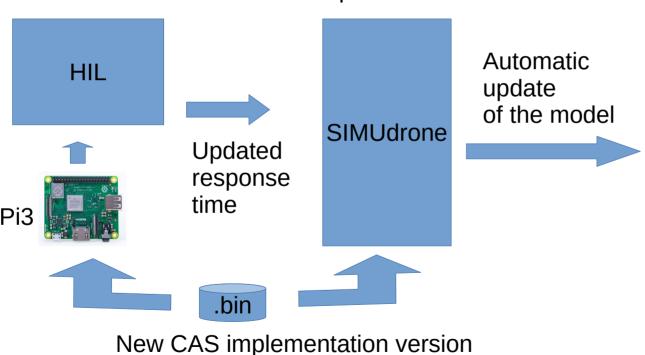
- Conflicting point scenario

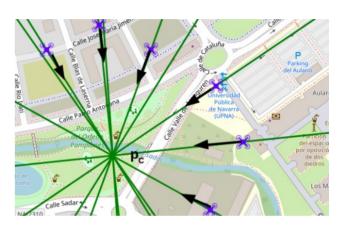
- Conflicting area scenario

UAS types available:

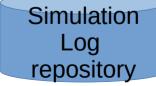
- Autopilot UAS
- Autonomous UAS
- Remotely piloted UAS

Simulations results


- Automated integrated continuous simulation that combines an HIL simulation and a software model simulation
 - A CAS implementation is executed in an embedded board
 - The response time obtained updates the simulator model of the CAS






Continuous traffic simulation

A continuous simulation example:

Simulation cycle

- CAS executes in a Pi3
- CAS implementation is integrated in SIMUdrone code base
- CAS integrated in *SIMUdrone* has the same response of the CAS running in a Pi3.
- SIMUdrone simulates a conflicting scenario
- New CAS versions are deployed to the Pi3 and SIMUdrone

Simulation results

- Improvement of the CAS implementation can be verified in conflicting scenarios
- A historical simulation log allows to compare CAS implementation improvements over time
- A simulation without CAS is the reference as it is the worst-case for a defined scenario

Conclusion

- SIMUdrone integrates simulations of virtual traffic scenarios with HIL simulations.
- Allows an automated simulation workflow to reduce time-to-market

Future Work

- Integration of external binaries of collision avoidance implementations.
- Integration of *SIMUdrone* with hardware implementations for UAS.

Future Work

- Implementation of models for more UAS components.
- HIL mode with more protocols available.
- Dataset of conflicts and avoidance maneuvers.

Thank you

