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• Development of a control system that enhances stability and confort by reducing

lateral motion of the vehicle

• Low-cost architecture

• Network saturation avoidance. Event-triggered data transmission

• Robust control solution towards network delays

1. Aims and contribution



4

• System states: 𝑥 = 𝜑, ሶ𝜑 𝑇

• Observed measurement: 𝑦 = ሶ𝜑

• Controlled output: 𝑧 = 𝜑, ሶ𝜑 𝑇

• Control input: 𝑢 = 𝑀𝑥

• System disturbances: 𝜔 = 𝑎𝑦 , 𝜑𝑟 , 𝑑𝑠
𝑇

2. Vehicle model

𝜑: roll angle (rad) 

ሶ𝜑: roll rate (rad/s)

𝑀𝑥: anti-roll moment (Nm)

𝑎𝑦: lateral acceleration of the vehicle (m/s2)

𝑑𝑠: unknown vector disturbance
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• Reduce the Transmission Rate (TR) over the communication network

𝑇𝑅 =
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑑𝑎𝑡𝑎

𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑎𝑡𝑎
=

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑑𝑎𝑡𝑎

𝑓𝑠𝑡
≤ 1

• Evaluate the difference between the current vehicle measurement and the last

transmitted one, 𝒆 𝒕 = 𝒚 𝒕 − ෥𝒚(𝒕)

• Design an event-triggering rule, so that a change in the control signal sent to the

actuators is made only when required:

𝑒𝑇 𝑡 𝐾𝑇Ω𝐾𝑒 𝑡 ≥ 𝜀2 ෤𝑦𝑇(𝑡)𝐾𝑇Ω𝐾 ෤𝑦(𝑡)

3. Event-triggering mechanism

෤𝑦(𝑡): last transmitted plant measurement

Ω, 𝜀: event-triggering parameters to desing
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• 𝑦 𝑡 is sampled every ℎ milliseconds and a control signal is evaluated

• The event-triggering mechanism decides whether to neglect this information or to

update the control input that the actuators must supply

• Every time a new data package is transmitted, a delay will appear through this

communication, 𝜏𝑚 ≤ 𝜏𝑘 ≤ 𝜏𝑀

• The actuators generate an anti-roll moment depending on the control signal

received from the network

4. Network communication
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4. Network communication
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• Control signal: 𝑢 𝑡 = 𝑲𝑦 𝑡

• The closed-loop 𝑯∞ performance is guaranteed if

𝑧𝑇 𝑡 𝑧 𝑡 2 < 𝛾2 𝜔𝑇 𝑡 𝜔(𝑡) 2

• The event triggering must be taken into account, as it affects system stability

• Communication delays must be taken into account, as they affect system stability

5. H∞ Output Feedback Controller design

𝐾: control gain to design

𝛾: positive scalar to minimize
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• Lyapunov stability analysis:

𝑉 𝑡 = 𝑉1 𝑡 + 𝑉2 𝑡 + 𝑉3 𝑡

𝑉1 𝑡 = 𝑥𝑇 𝑡 𝑃𝑥 𝑡

𝑉2 𝑡 = න
𝑡−𝜏

𝑡

ሶ𝑥𝑇(𝑠)𝐶1
𝑇𝐾𝑇𝑆𝐾𝐶1𝑥 𝑠 𝑑𝑠

𝑉3 𝑡 = න
𝑡−𝜏

𝑡

(𝑠 − 𝑡 − 𝜏 ) ሶ𝑥𝑇(𝑠)𝐶1
𝑇𝐾𝑇𝑅𝐾𝐶1 ሶ𝑥 𝑠 𝑑𝑠

5. H∞ Output Feedback Controller design

𝜏 = 𝜏𝑀 + ℎ

𝑆, R: real positive symmetric matrices to design
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• User constrained values: 𝒉 = 𝟐𝟎𝒎𝒔, 𝝉𝑴 = 𝟐𝟎𝒎𝒔, 𝝉𝒎 = 𝟏𝟎𝒎𝒔, 𝜺 = 𝟎. 𝟏

• The control gain 𝑲 is obtained through the minimization problem

min 𝛾2

subject to 𝑃 > 0, 𝑅 > 0, 𝑆 > 0,Ω > 0

• A feasible solution is found using the MATLAB LMI solvers

5. H∞ Output Feedback Controller design
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• Experiment 1. Double line change at 100 km/h

6. CarSIM Simulation results

RMS Roll Rate (º/s) MAX Roll Rate (º/s) RMS Roll Angle (º) MAX Roll Angle (º)

Passive system 3.57 4.15 1.97 3.31

Active system (proposed) 1.70 3.31 1.14 2.22
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6. CarSIM Simulation results
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• Experiment 2. Double line change at 120 km/h

6. CarSIM Simulation results

RMS Roll Rate (º/s) MAX Roll Rate (º/s) RMS Roll Angle (º) MAX Roll Angle (º)

Passive system 4.13 11.05 2.18 3.27

Active system (proposed) 2.21 5.38 1.30 2.26
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6. CarSIM Simulation results
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• To analyze the performance of the proposed controller, the RMS and MAX values

of the roll rate and angle are compared, leading to a reduction of up to 50% of the

roll rate and angle in the worst cases

• The Event-Triggered mechanism reduces the network communication resources

usage by up to 70%

• Future works may include the consideration of actuator and sensor faults

7. Conclusions and future work
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