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About me

Alberto Musa

Researcher assistant in the Department of Electrical, Electronic, and
Information of the Alma Mater Università di Bologna.

Research topic:

▪ Optimization of autonomous Cyber Physical Systems (CPS), whit
more focus on Unmanned Aerial Vehicles (UAVs), applied to
Reinforcement Learning (RL) algorithms in real and simulated
environments.
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Micro UAV from BitCrazeMavic 2 PRO from DJI

Unmanned Aerial Vehicles (UAVs) are complex
robotic platforms (or Cyber-Physical Systems - CPS)
designed for flight without a human pilot.
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Micro UAV from BitCraze

Unmanned Aerial Vehicles (UAVs) are complex
robotic platforms (or Cyber-Physical Systems - CPS)
designed for flight without a human pilot.

Reinforcement Learning (RL) algorithms enable UAVs
to perform autonomous control tasks such as obstacle
avoidance.

Mavic 2 PRO from DJI
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The RL loop requires to simulate both the environment
and the CPS agent. RL extracts knowledge from the
interaction between the environment and the agent.



20/10/2022 4

Introduction – UAV and Autonomous Navigation

ALBERTO MUSA – SIMUL 22

Intro
Background
Methodology
Results
Conclusion

The RL loop requires to simulate both the environment
and the CPS agent. RL extracts knowledge from the
interaction between the environment and the agent.

RL training requires performing the task (called game)
repeatedly until the task is learned. This can easily require
thousands or millions of games.
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Simulators replicate the agent capabilities (e.g., the UAV flight) and real environments

• real-world physics rules, and perception capabilities.

• forces that act in the simulated scenario (gravity, rotors actuation, collisions, etc.)
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Relevant simulator features are:
• Co-Simulation: rapid flight control and RL-trained solution rapid prototyping.

• Photorealism: if the task to be performed by the agent leverages camera sensors, accurate
and photorealistic rendering of the scene becomes mandatory.

Most suitable simulators for UAV applications

AirSim Flightmare Gazebo Webots

Photorealism x x

Co-Simulation x x x

Simulators replicate the agent capabilities (e.g., the UAV flight) and real environments

• real-world physics rules, and perception capabilities.

• forces that act in the simulated scenario (gravity, rotors actuation, collisions, etc.)
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RQ1: Is it possible to accelerate RL
training for UAVs in AirSim?

RQ2: What is the implication in
terms of performance of the
simulated drone flight, interaction
with the environment, and trained
RL algorithm?
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Client API

Client APIs
Used to interact with the built-in 

autopilot.

• Impose the desired waypoint through 
an asynchronous command

• Enforcing synchronous control

• Gather the UAV agent state
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Simple Flight
Controller

Client API

Desired State

Agent State

Built-in Flight Control Systems 
(Simple Flight Controller)

• stoppable clock to pause the 
simulation at any point.

Client APIs
Used to interact with the built-in 

autopilot.

• Impose the desired waypoint through 
an asynchronous command

• Enforcing synchronous control

• Gather the UAV agent state
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ClockSpeed setting

changes the ratio between
the simulation and the wall
clock time

Simple Flight
Controller

Client API

Built-in Flight Control Systems 
(Simple Flight Controller)

• stoppable clock to pause the 
simulation at any point.

Desired State

Agent State

Actuator Signal

Sensors State

Client APIs
Used to interact with the built-in 

autopilot.

• Impose the desired waypoint through 
an asynchronous command

• Enforcing synchronous control

• Gather the UAV agent state
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Mission Computer Application

Action

State

Observation

Neural Network
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Simple Flight
Controller

Desired
State

Agent
State

Actuator
Signal

Sensors
State

Mission Computer Application (MCA)

• Deep RL aims at solving complex robotic tasks by
mimicking human training behavior with the use of Neural
Networks.

✓Uses Client APIs to issue commands and observe the UAV
state

AirSim
Client gathers multiple UAV states during the command
execution by issuing a concurrent thread that pauses the
simulation at specific time intervals.

AirSim Default Synchronous Command (ADSC).
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▪Callback timing of three consecutive commands with ADSC.

▪Accelerated simulation is subject to command delays due to
communication between simulation, Simple flight, and Client
API.

▪Delay in the move command increases with the accelerator factor
⇒ during the command delay, the simulator continues to
evaluate the UAV.



20/10/2022 9

AirSim Setup Profiling

ALBERTO MUSA – SIMUL 22

Intro
Background
Methodology
Results
Conclusion

▪In an accelerated game the simulator rendering time
is lowered, making hard to complete the images.

▪The result images may be perturbed.

▪Callback timing of three consecutive commands with ADSC.

▪Accelerated simulation is subject to command delays due to
communication between simulation, Simple flight, and Client
API.

▪Delay in the move command increases with the accelerator factor
⇒ during the command delay, the simulator continues to
evaluate the UAV.
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Speed-up Effects Mitigation – Latencies
Time-Controlled Simulation Command (TCSC).

• uses the stoppable clock of the Simple Flight to control the
simulation until the command expires.

• is implemented by periodic stimulation interrupts
interleaved with command expired-time checks.
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Pause the simulation
Time-Controlled Simulation Command (TCSC).

• uses the stoppable clock of the Simple Flight to control the
simulation until the command expires.

• is implemented by periodic stimulation interrupts
interleaved with command expired-time checks.

Simulation pause
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Pause the simulation

Lanunch command for time T

Time-Controlled Simulation Command (TCSC).

• uses the stoppable clock of the Simple Flight to control the
simulation until the command expires.

• is implemented by periodic stimulation interrupts
interleaved with command expired-time checks.

T = imposed time;

Simulation pause

1. Launch asynchronous command for time T
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Pause the simulation

Lanunch command for time T

Continue simulation for time T

Time-Controlled Simulation Command (TCSC).

• uses the stoppable clock of the Simple Flight to control the
simulation until the command expires.

• is implemented by periodic stimulation interrupts
interleaved with command expired-time checks.

T = imposed time;

Simulation pause

1. Launch asynchronous command for time T

2. Continue simulation for time T
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Pause the simulation

Lanunch command for time T

Continue simulation for time T

Collect T’

Time-Controlled Simulation Command (TCSC).

• uses the stoppable clock of the Simple Flight to control the
simulation until the command expires.

• is implemented by periodic stimulation interrupts
interleaved with command expired-time checks.

T = imposed time; T’ = effective simulation time

Simulation pause

1. Launch asynchronous command for time T

2. Continue simulation for time T

3. Collect simulation time T’
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Speed-up Effects Mitigation – Latencies
Time-Controlled Simulation Command (TCSC).

• uses the stoppable clock of the Simple Flight to control the
simulation until the command expires.

• is implemented by periodic stimulation interrupts
interleaved with command expired-time checks.

T = imposed time; T’ = effective simulation time

Simulation pause

1. Launch asynchronous command for time T

2. Continue simulation for time T

3. Collect simulation time T’

4. If T’≤T: T=T-T’

return to 1.

Otherwise: Collect State or

End Command
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T’ ≤ T
True

Pause the simulation

Lanunch command for time T

Continue simulation for time T

Collect T’

T = T – T’
Collect State/

End Command

False
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1. Accuracy of trajectories (Deterministic Path 1).

• Spatiotemporal Linear Combined (STLC) distance: score
between 0 and 2, where 2 is the maximum value indicating
that the trajectories are entirely overlapped.

• reference is the ADSC real-time trajectory



20/10/2022 11

Characterization Methodology

ALBERTO MUSA – SIMUL 22

Intro
Background
Methodology
Results
Conclusion

1. Accuracy of trajectories (Deterministic Path 1).

• Spatiotemporal Linear Combined (STLC) distance: score
between 0 and 2, where 2 is the maximum value indicating
that the trajectories are entirely overlapped.

• reference is the ADSC real-time trajectory

2. Visual perception accuracy (Deterministic Path 2).

• Is the quality of the image related to the error in UAV gathering
coordinates?

• Euclidean distance between the coordinates (reference and
accelerated simulation);

• The difference in percentage of image pixels between the camera
image taken in the accelerated and real-time simulation ⇒
Event Dissimilarity (ED).
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Characterization Methodology

3. Impact of the agent performance trained with
RL.

Replicate an obstacle avoidance task in a lane (AirSim
RL Environment ) using event camera images

▪ RL training procedure of 5000 games.

▪ RL inference in real-time with ADSC.

▪ Evaluation of the UAV success ratio (number of times
the UAV reaches the end of the environment without
collisions) in inference over 100 games.

• interchangeability of commands when the
simulation happens in real-time.

• comparison of the UAV success ratio computed
with different AirSim acceleration factors.

ALBERTO MUSA – SIMUL 22
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I - Trajectory accuracy
▪For a given AirSim acceleration factor, the trajectory accuracy worsens with the command length ⇒ the error
accumulates between consecutive commands. This is expected as the source of the trajectory error is the
command latency.

▪The proposed TCSC command significantly outperforms the ADSC trajectory accuracy.

• The proposed TCSC provides a distance higher than 1.8 in the median case.

• The ADSC reaches it for acceleration lower than 5x.
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II - Visual Perception accuracy

Increasing the acceleration factor to slightly
increases the ED and the Euclidean distance.

If the ED depended on the position error, the
points would be along the oblique arrow.

For each acceleration factor, horizontal clusters are
generated.
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The difference in the images seen from the UAV's camera does not depend only on the position error
induced by the simulation acceleration but that the latency in command can lead to a different camera
orientation while the UAV is in a relatively similar position.
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III - RL Agent Performance
Simulation acceleration with TCSC applied to RL
algorithms does not alter the simulation
environment.

By increasing the acceleration of the simulation,
the trajectories and perception perturbations
increase, impacting the performance of the RL.

20/10/2022 ALBERTO MUSA – SIMUL 22

ClockSpeed

1x 5x 10x 50x 100x

ADSC 23 1 0 0 0

TCSC 21 30 23 14 13

• By accelerating the simulation to 5.2x the UAV
success ratio is the same as the inference with training
performed in real-time

• Training with ClockSpeed of 50x and 100x achieved
effective speed-up of 14.8x and 15.4x and replicated
more than 62% of the UAV success ratio in real-time.

Accelerated simulation training with ADSC failed to
complete games in real-time inference.

With TCSC, training that in real-time simulation
requires one week of simulations has been
replicated in less than two days.
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A method to accelerate the training of UAV agents trained in RL by reducing the simulation time.

Time-Controlled Simulation Command (TCSC) in opposition to the AirSim Default Synchronous Command
(ADSC)
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A method to accelerate the training of UAV agents trained in RL by reducing the simulation time.

Time-Controlled Simulation Command (TCSC) in opposition to the AirSim Default Synchronous Command
(ADSC)

1

Mitigate the error on the
trajectories of UAV agents in
accelerated simulation.



16

Conclusions

20/10/2022 ALBERTO MUSA – SIMUL 22

Intro
Background
Methodology
Results
Conclusion
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1 2

Mitigate the error on the
trajectories of UAV agents in
accelerated simulation.

Mitigate the noise due to the
acceleration of the simulation that
generates perturbations in the
camera images.
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Perform accelerated training with TCSC and ADCS,
comparing them in 100 games inferences on real-
time simulations:

•Training with TCSC on accelerated simulation up to 5.2x
has the same UAV success ratio of the inference with
training performed in real-time

•Training with a speed-up of 15.4x replicated more than
62% of the UAV success ratio in real-time.

•Accelerated simulation training with ADSC failed to
complete games in real-time inference.

1 2 3

Mitigate the error on the
trajectories of UAV agents in
accelerated simulation.

Mitigate the noise due to the
acceleration of the simulation that
generates perturbations in the
camera images.

A method to accelerate the training of UAV agents trained in RL by reducing the simulation time.

Time-Controlled Simulation Command (TCSC) in opposition to the AirSim Default Synchronous Command
(ADSC)
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