
Processing Linear Graph Signals

Pavel Loskot
pavelloskot@intl.zju.edu.cn

Pavel Loskot, ZJU-UIUC©2022 1/29

About Me

Pavel Loskot joined the ZJU-UIUC Institute as Associate Professor in January 2021. He

received PhD in Wireless Communications from University of Alberta, Canada, and MSc and

BSc in Radioelectronics and Biomedical Electronics, respectively, from the Czech Technical

University of Prague. He is Senior Member of the IEEE, Fellow of the HEA, and the Recognized

Research Supervisor of the UKCGE in the UK.

In the past 25 years, he was involved in numerous industrial and academic collaborative

projects in the Czech Republic, Finland, Canada, UK, Turkey, and China. These projects

concerned mainly wireless and optical telecommunication networks, but also genetic circuits,

air transport services, and renewable energy systems. This experience allowed him to truly

understand the interdisciplinary workings, and crossing the disciplines boundaries.

His current research focuses on statistical signal processing, classical machine learning, and

importing methods from Telecommunication Engineering and Computer Science to model and

analyze systems more efficiently and with greater information power.

Pavel Loskot, ZJU-UIUC©2022 2/29

Objective

Define linear graph signals, and outline typical signal processing problems

where these signals appear.

Topics

• graph signals and systems

• linear graph signals

• difference equation

• digital filters

• ARMA signal model

• linear structural causal model

• graph inference

• compressive sensing

• graph signal compression/decompression

• linear statistical learning

• gamma process generation

Pavel Loskot, ZJU-UIUC©2022 3/29

Graph Signals and Systems

v4

v3 v6

v7

v5v1

v2

f : V 7→ R |V |

Graph systems

• flow-based modeling: networks of nodes with links

• flows have direction, constrained by transport capacity

• multiple-inputs (sources), multi-outputs (sinks)

• scenarios: epidemics, information spreading, Internet, computing etc.

Graph signals∗

• relationships among random variables: graphs of vertexes with edges

• set of instantaneous and long-term features/attributes/interactions

• features/attributes/interactions can be zero or not available

• scenarios: multivariate time-series, computer vision, biological signals

∗P. Loskot, “A Generative Model for Correlated Graph Signals,” Mathematics, 9(23), Nov. 2021.

Pavel Loskot, ZJU-UIUC©2022 4/29

Graph Signal Processing

Mainstream approach∗

• 1D signal filtering

st−1 = z−1st, h(z) = h0z0
+h1z−1

+ . . .+hN−1z−(N−1)

• graph filtering

ssst−1 = AAA−1ssst, h(AAA) = h0AAA0
+h1AAA−1

+ . . .+hN−1AAA−(N−1)

• shift-invariance
h′(z)→ zh(z), h′(AAA)→ AAAh(AAA)

• graph Fourier transform

sssout = AAA sssin, AAA = UUU−1
ΛΛΛ UUU

︸︷︷︸

GFT

UUUsssout = h(ΛΛΛ)UUU sssin

∗P. Loskot, “Current Approaches to Graph Signal Processing,” Tutorial, Signal 2021.

Pavel Loskot, ZJU-UIUC©2022 5/29

Linear Graph Signals

Definition

• linearly combine neighbor node values

st(i) =
∑

j∈N(i)

AAAi, j st−1(i) ⇒ ssst = ssst−1+AAA′ssst−1 =
(

III+AAA′
)

ssst−1 = AAA ssst−1

• some nodes act as sinks or sources

ssst = AAA ssst−1+uuut

• linearly combine node values from neighbors at most K-hops away

ssst =

K∑

k=1

AAAkssst−k+uuut (1)

note that
∑K

k=1 AAAk is the number of walks of length at most K

• eq. (1) is a stationary MIMO system with memory

Pavel Loskot, ZJU-UIUC©2022 6/29

Linear Graph Signals (2)

Super-linear graph signals

• graphs can be merged or split

G =G1 ◦G2

• graphs can be embedded and form
hierarchical structures

Vsubset→Gsubset or Gsubset→ Vsubset

GGG222(((VVV 222,,,EEE222)))

GGG111(((VVV 111,,,EEE111)))

Adjacency matrix

• AAA is symmetric (AAA = AAAT) for undirected graphs

• AAA is asymmetric for directed graphs

G1 −G2

G2−G1 G2

G1

AAA =

Pavel Loskot, ZJU-UIUC©2022 7/29

Linear Graph Signals (3)

Graph inference

• given observations ssst, t = 1, . . . ,T , find AAA
→ statistical learning

• let SSS T−1 = [sss1, . . . , sssT−1] and SSS T = [sss2, . . . , sssT], then

SSS T = AAASSS T−1 ⇒ ÂAA = SSS TSSS +T−1

• issues:
→ what if T ≫ N (number of nodes)?
→ other norms e.g. l1 or l∞ or AAA to be binary?
→ add regularization or prior knowledge?
→ noisy measurements with sub-sampling (missing data)?

Graph design

• design AAA without measurements
→ model based design
→ statistical signal processing

• constraints:
→ model structure (e.g. sparsity)
→ input/output statistics (e.g. distributions, moments, independence)

Many problems can be formulated this way.

Pavel Loskot, ZJU-UIUC©2022 8/29

Vector Difference Equation

ssst =

D∑

d=1

AAAd ssst−d+bbb = AAAt⊗ ssst+bbb
D : order

AAAd,bbb : deterministic matrices, vector

First-order case (D = 1)

• homogeneous: bbb = 0

ssst = AAAtsss0 =

(

UUUΛΛΛUUUT
)t

sss0 = UUUΛΛΛtUUUT sss0

• non-homogeneous: bbb , 0

ssst = ssst−1 = (III−AAA)−1bbb ≡ sss∗ (steady-state)

ssst = sss∗+AAA(ssst−1− sss∗)

stable, if limt→∞ ssst = sss∗

General case (D > 1)

• using roots of characteristic matrix polynomial of a homogeneous system

• using element-wise (vector) Z-transform

s̃ss(z) =Z {ssst} =
∞∑

t=0

ssst z
−t, ssst =Z

−1{s̃ss(z)} = 1

2πj

∮

C

s̃ss(z)zt−1 dz

Pavel Loskot, ZJU-UIUC©2022 9/29

Matrix Difference Equation

First-order case

SSS t+1 = AAASSS t+BBB, t = 0,1,2, . . .

• deterministic system, initial value SSS 0 and AAA and BBB are known

• steady state

S̄SS = AAAS̄SS +BBB ⇒ S̄SS =
BBB

III−AAA

• if AAA , III, then

SSS t = AAAtSSS 0+

(

III−AAAt

III−AAA

)

BBB = AAAt
(

SSS 0−
BBB

III−AAA
︸︷︷︸

S̄SS

)

+
BBB

III−AAA

• alternatively,

SSS t = c AAAt
+

BBB

III−AAA
︸︷︷︸

S̄SS

, c = SSS 0−
BBB

III−AAA
(same solution as above)

• if AAA = III, then
SSS t = SSS 0+BBBt

Pavel Loskot, ZJU-UIUC©2022 10/29

Digital Filters

Infinite size, LTI SISO system

• convolution, yyy = hhh⊗ xxx, hhh = [h0,h1, . . . ,hK] is finite impulse response

• matrix form with N input time-series, HHH is Toeplitz
→ infinite HHH also allows for IIR filters





y01 · · · y0N

y11 · · · y1N
... ...





︸ ︷︷ ︸

YYY

=





h0 0 0 0 0 0 · · ·
h1 h0 0 0 0 0 · · ·
... · · ·
0 0 hK · · · h1 h0 · · ·
...





︸ ︷︷ ︸

HHH

·





x01 · · · x0N

x11 · · · x1N
... ...





︸ ︷︷ ︸

XXX

• estimating hhh (system identification)
yyy = hhh⊗ xxx = HHH · xxx
yyy = xxx⊗hhh = XXX ·hhh ⇒ ĥhh = (XXXT XXX)−1XXXThhh

Finite size, LTI SISO system

• cyclic convolution, yyy = DFT−1{DFT{hhh} ·DFT{xxx} }
• HHH is cyclic and invertible (in general, inverse of FIR filter is IIR filter)

YYY =





h0 0 · · · 0 hK · · · h2 h1

h1 h0 0 · · · 0 hK · · · h2
...




·XXX

Pavel Loskot, ZJU-UIUC©2022 11/29

Digital Filters (2)

MIMO IIR system

• state-space enables compact representation

• ppp is a (vector) state

ppp(t+1) = AAAppp(t)+BBBxxx(t)

yyy(t) = CCC ppp(t)+DDDxxx(t)

• AAA is state transition matrix
→ determines dynamics (e.g., resonant modes)

• in control engineering, AAA, BBB, CCC and DDD are time-varying

Impulse (matrix) response

• hhh(t) = yyy(t), for xxx(t) = δ(t)

hhh(t) =

{

DDD t = 0

CCCAAAt−1BBB t > 0

Overall output response

yyy(t) = CCCAAAt−1ppp(0)
︸ ︷︷ ︸

initial state ppp(0)

+ hhh(t)⊗ xxx(t)=CCCAAAt−1ppp(0) +

{

DDDxxx(0) t = 0
∑t
τ=0 CCCAAAτ−1BBB xxx(t−τ) t > 0

Pavel Loskot, ZJU-UIUC©2022 12/29

Digital Filters (3)

Transfer function

• (matrix) Z-transform

h̃hh(z) =

∞∑

t=0

hhh(t)z−t
= DDD+

∞∑

t=1

(CCCAAAn−1BBB)z−n
= DDD+CCC z−1

∞∑

t=0

(z−1AAA)t

︸ ︷︷ ︸

(zIII−AAA)−1

BBB

• MIMO system in Z-domain

ỹyy(z) = h̃hh(z) ⊙ x̃xx(z)

• all components of h̃hh(z) have the same poles, but different zeros
→ different controllability from particular inputs
→ different observability at particular outputs

Similarity transform

• xxx′(t) = SSS xxx(t), does not change h̃hh(z), and so also does not change hhh(t)

Diagonal AAA

• if transition matrix, AAA ≡ ΛΛΛ, and SSS are eigenvectors of AAA, then
→ the system is a set of decoupled parallel one-pole SISO systems
→ it allows partial fraction expansion of HHH(z), e.g. for stability analysis

Pavel Loskot, ZJU-UIUC©2022 13/29

Digital Filters (4)

xxx(t+1) = AAAxxx(t)+BBBuuu(t)

Observability

• state xxx(t) can be inferred from finite observations (subset of nodes)
→ can find trajectory xxx(t) from any initial state xxx(0) to current state
→ [CCC,CCCAAA, . . . ,CCCAAAn−1]T must have rank n

• strongly connected components (there is a path between any two nodes)
→ have to observe at least one node from each SCC

• for linear model, can use maximum matching to find minimum # sensors
→ often much larger than # SCC (due to model symmetries)

• surprisingly, for non-linear model, sensors predicted by SCCs are necessary
as well as sufficient (since model symmetries are rare)

YY Liu, JJ Slotine, AL Barabási, Observability of complex systems, PNAS 2013.

Pavel Loskot, ZJU-UIUC©2022 14/29

Digital Filters (5)

xxx(t+1) = AAAxxx(t)+BBBuuu(t)

Controllability

• can drive the system between any given states
→ [BBB,AAABBB,AAA2BBB, . . . ,AAAn−1BBB] must be full rank (Kalman condition)

• surprisingly, driver nodes tend to avoid hubs
→ average degree of driver nodes is smaller than average degree of a graph
→ required # of driver nodes mainly determined by graph degree distribution

• sparse and heterogeneous networks are harder to control than dense and
homogeneous networks

YY Liu, JJ Slotine, AL Barabási, Controllability of complex networks, Nature 2011.

Pavel Loskot, ZJU-UIUC©2022 15/29

ARMA Model

LTI SISO system

• described by a difference equation of order (m,n)

s(t) =

m∑

k=1

ak s(t− k)+

M∑

k=0

bk u(t− k)

• can introduce a vector of m states to obtain the first-order difference equation





p1(t)

p2(t)
...

pm−1(t)

pm(t)





︸ ︷︷ ︸

ppp(t)

=





−a1 1 0 · · · 0

−a2 0 1 . . . 0
...

−am−1 0 0 . . . 1

−am 0 0 · · · 0





︸ ︷︷ ︸

AAA

×





p1(t−1)

p2(t−1)
...

pm−1(t−1)

pm(t−1)





︸ ︷︷ ︸

ppp(t−1)

+





b0
...

bM
...

0





u(t)

︸ ︷︷ ︸

qqq(t)

• process noise

→ E
[

qqq(t)
]

= 0 (zero-mean), E
[

qqqT (t)qqq(τ)
]

=

{

CCCqqq(t) t = τ (white, but

0 t , τ non-stationary)

Pavel Loskot, ZJU-UIUC©2022 16/29

ARMA Model (2)

MIMO LTI system

• described by a difference equation of order (m,n)

sss(t) =

m∑

k=1

AAAksss(t− k)+

M∑

k=0

BBBkuuu(t− k) (1)

• if AAA and BBB are N ×N matrices, (1) can be rewritten as SISO ARMA model of
order (mN, nN)
→ then again rewritten as the first-order difference model

ppp(t) = AAAppp(t−1)+qqq(t)

Estimating the model graph

• stacking up T measurements followed by the least-square fitting

PPPT = AAAPPPT−1+QQQ ⇒ ÂAA = PPPT PPPT
T−1(PPPT−1PPPT

T−1)−1

• but numerical issues as the dimension ∝ N

Pavel Loskot, ZJU-UIUC©2022 17/29

Linear Structural Causal Models

Linear SCM

Yi =
∑

k∈PA j
β jkXk+Ui

YYY = βββXXX+UUU

β jk : structural coefficients

Xk : direct cause of Yi

Ui : exogenous unobserved variables/effects

(effects outside the model)

SCM rules

• Xi are normalized (E[Xi] = 0, E
[

X2
i

]

= 1)

X
β

−−−−−→ Y
E[Y |do(X = x)] = E

[

βx+U
]

= βx

E[XY] = E
[

X(βX+U)
]

= βE
[

X2
]

+E[X]E[U] = β

X

uXY←−−→
β

−−−−−→ Y E[XY] = E
[

X(βX+UY)
]

= β+E[XUY] = β+uXY

Theorem: Linear SCM with Gaussian exogenous effects is fully identifiable from
the observations, if the exogenous variables have equal or known variances.

• run independence tests to identify (multiple) candidate SCMs
→ select the model with the best score/likelihood

Pavel Loskot, ZJU-UIUC©2022 18/29

Network Tomography

i3a12
a23

a34

a(d−1)d
i1

i2 id−1

id

Network observations

• network with weights ai j between nodes i and j

• path P = {(i1i2), (i2i3), . . . , (id−1id)} from node i1 to node id
→ accumulated weight along the path P is y =

∑

(i j)∈Pai j

• paths as rows in binary matrix PPP ∈ {0,1}m×n measured by probes xxx, and
aaa represents an adjacency weight vector

yyy = PPP ·aaa+ xxx
Task

• find minimal PPP to efficiently estimate aaa from yyy and xxx
→ only some nodes may be suitable as inputs xxx and outputs yyy

• requires over-determined system of equations
→ if aaa is sparse, may design PPP to achieve compressive sensing

• alternatively, determine (sparse) change ∆aaa (anomaly), if nominal aaa known

yyy = PPP · (aaa+∆aaa)+ xxx = PPP ·aaa
︸︷︷︸

known

+PPP ·∆aaa+ xxx

Pavel Loskot, ZJU-UIUC©2022 19/29

Compressive Sensing

Linear sensing

yyy = SSS · xxx+www

yyy : compressed/observed signal

SSS : sensing matrix

xxx : desired signal

www : observation noise

S x y

Task

• given yyy, SSS , and norms lp and lq, approximate xxx by xxx∗, so that

‖xxx∗− xxx‖p ≤C(k) min
x̃xx
‖x̃xx− xxx‖q

• best xxx∗ contains k largest (abs) values of xxx, so if xxx is also k-sparse, then
xxx∗ = xxx, and the recovery is exact

• typically
‖xxx∗− xxx‖2 ≤ C minx̃xx ‖x̃xx− xxx‖2
‖xxx∗− xxx‖1 ≤ C minx̃xx ‖x̃xx− xxx‖1
‖xxx∗− xxx‖2 ≤ (C/

√
k) minx̃xx ‖x̃xx− xxx‖1

Questions

• what is minimum # of observations (maximum compression)?

• how to find SSS ? by assuming, ‖xxx‖2 ≈ ‖AAAxxx‖2

Pavel Loskot, ZJU-UIUC©2022 20/29

Graph Compression

Adjacency vector

• undirected graph G(V,E) has at most n = 1
2
(|V |2− |V |) edges

A

aT

Graph compression

• if graph G(V,E) is sparse, adjacency vector aaa is k-sparse, and k = |E| ≪ n

• define compression matrix SSS for a known k-sparse aaa
→ dense random SSS may be a good choice

Graph decompression

no noise: min‖aaa∗‖1 s.t. SSS aaa∗ = SSS aaa

with noise: min‖aaa∗‖1 s.t. ‖SSS aaa∗− yyy‖2 ≤ ǫ

Pavel Loskot, ZJU-UIUC©2022 21/29

Linear Statistical Learning∗

General model

YYY = LLL+AAASSS +WWW

YYY : observations

LLL : background

AAA : dictionary

SSS : sparse signal

WWW : additive noise

Problems
LLL = 0, AAA known compressive sampling/sensing

LLL = 0 dictionary learning, matrix factorization

AAA = III principal component pursuit (PCP)

SSS = 0, LLL low-rank principal component analysis (PCA)

Solutions

• minimize reconstruction error

• stochastic approximations

• off-line and online strategies

• linear algebra with random matrices

Applications

• graph visualization

• graph compression/decompression

• clustering data

• detecting outliers and anomalies

∗G. B. Giannakis, Challenges and SP Tools for Big Data Analytics, IEEE SPS Summer School,

Vancouver, Canada, July 2014.

Pavel Loskot, ZJU-UIUC©2022 22/29

Linear Statistical Learning (2)

Graph and signal learning

• observations yyyt = AAAssst+wwwt, such that AAA � 0 is N ×N and sparse

• batch of measurements, t = 1, . . . ,T ≫ N

YYY = AAASSS +WWW

• for Gaussian WWW, alternate minimization of the convex loss functions

AAAk+1 = argminAAA ‖YYY −AAASSS k‖2F +λ
N∑

n=1

‖aaan‖1 (Lasso)

SSS k+1 = argminSSS ‖YYY −AAAk+1SSS ‖2F
→ λ controls sparsity of AAA

• online learning for streaming data

AAAk+1 = argminAAA

t∑

k=t−τ

∥
∥
∥yyyk−AAAsssk

∥
∥
∥

2

F
+λ

N∑

n=1

‖aaan‖1

sssk+1 = argminsss

∥
∥
∥yyyt−AAAk+1sss

∥
∥
∥

2

F

• other constraints, e.g. SSS T SSS = III (orthogonal signals)

• other problems, e.g. YYY = AAA(SSS +SSS a)+WWW, where SSS a represents anomaly

Pavel Loskot, ZJU-UIUC©2022 23/29

Linear Statistical Learning (3)

Learning over networks: A fusion center

• difficult to scale, single point of failure

• communication bottleneck (real-time apps)

• high energy demand at the center

Learning over networks: sequentially distributed

• a ring does not scale, node failures

• easy to design for static nodes

• slow learning (real-time apps)

Learning over networks: concurrent

• difficult to design and maintain

• convergence issues

• may not use resources efficiently and fairly

• but learning can be robust and fast

Pavel Loskot, ZJU-UIUC©2022 24/29

Linear Statistical Filtering

Parameters

ppp(t) = AAA(t)ppp(t−1)+bbb(t)+qqq(t)

AAA(t) : known transition matrix (a graph)

bbb(t) : known deterministic vector signal

qqq(t) : parameter uncertainty

Measurements

xxx(t) = DDD(t)ppp(t)+ rrr(t)+www(t)

DDD(t) : known measurement transform

rrr(t) : known deterministic effects

www(t) : measurement noise

Noise and parameter uncertainty models

cov
[

www(t)wwwT (τ)
]

=

{

0 t , τ

WWW(t) t = τ
, E[www(t)] = 0, cov

[

www(t)pppT (τ)
]

= 0

cov
[

qqq(t)qqqT (τ)
]

=

{

0 t , τ

QQQ(t) t = τ
, E

[

qqq(t)
]

= 0, cov
[

qqq(t)wwwT (τ)
]

= 0

Pavel Loskot, ZJU-UIUC©2022 25/29

Linear Statistical Filtering (2)

Kalman filter

• recursive linear MMSE or best linear unbiased (BLUE) estimator

• linear measurement model with white Gaussian noise
→ only need to track changes in conditional mean and covariance

• in steady-state, the matrices AAA, DDD, QQQ and WWW are constant
→ Kalman filter converges Wiener filter

Filtering steps

1. Prediction step

- extrapolate ppp(t−1) as pppe(t), and xxx(t−1) as DDDpppe(t)+ rrr(t)

2. Correction step

- estimate p̂pp(t) = pppe(t)+KKK(t)
[

xxx(t)−DDDpppe(t)− rrr(t)
]

- Kalman gain KKK(t) is computed to recursively achieve MMSE

Two vector parameters

• two independent first-order AR processes ppp1(t) and ppp2(t)

• measurements: xxx(t) = DDD1(t)ppp1(t)+DDD2(t)ppp2(t)+ rrr(t)+www(t)

• Task 1: separate ppp1(t) and ppp2(t)

• Task 2: eliminate ppp2(t) representing non-white noise/interference

Pavel Loskot, ZJU-UIUC©2022 26/29

Generating Gamma Process

Definition

• samples are gamma distributed: X(t) ∼ λγt

Γ(γt)
xγt−1 e−λx, for ∀t

• auto-correlation: corr[X(τ),X(t)] =
√
τ
t
, τ < t

• the increase per unit time has mean γ/λ and variance γ/λ2

Gamma distribution

• G(X;k, θ) ≡ 1

Γ(k)θk
xk−1 e−x/θ, where k > 0 shape, θ > 0 scale

• mean µ = kθ, variance ν = kθ2, moments E[Xn] = θn
Γ(n+k)

Γ(k)

• exponential and chi-square are special case of gamma distribution

Sum of gamma random variables

• if Xi are:

(1) independent
(2) gamma distributed
(3) have same scale θ

• then, Y =
∑N

i=1 Xi ∼ G(Y;
∑N

i=1 ki, θ)

• note that, limk→∞G(X;k, θ) = δ(X)

Pavel Loskot, ZJU-UIUC©2022 27/29

Generating Gamma Process (2)

General strategy

• linearly combine independent gamma distributed samples
→ available in most numerical packages (Matlab, Octave, R, Numpy, ...)

Yt = ht⊗Xt

Theorem: The impulse response ht of an linear filter to linearly combine gamma

samples Xt must be finite, and ht ∈ {0,c} for ∀t to generate a gamma process.

Auto-covariance

• {Xt}t is white and θ = const, and filter is LTI

• if {Xt}t is stationary, i.e., kt = const:
CY(t) = kθ2 ·ht⊗h−t

• if {Xt}t is non-stationary, i.e., kt is
deterministic: CY(t, τ) = θ2 · k(t, τ)⊗ k(−t, τ)

Examples

1. ht = [1,1,1,1,1], kt = 1 = const

2. ht = [1,0,1,0,1], kt = [1,1,0.1] (periodic)

3. ht = [1,1,0,1,1], kt = [1,2,0.5] (periodic)

Pavel Loskot, ZJU-UIUC©2022 28/29

Take-Home Messages

1. Graph signals represent multiple stochastic processes with a defined set of
pairwise constraints.

2. Linear graph signals are defined by an adjacency matrix AAA and linear algebra
operations with or without a recursion.
→ AAA can be binary, sparse, or otherwise constrained

3. Many important and interesting problems involve linear graph signals.

→ Linear digital filtering

→ Linear structural causal models

→ ARMA processes and their processing

→ Graph inference/reconstruction from observations

→ Compressive sensing

→ Graph compression/decompression

→ Linear statistical learning, centralized and distributed

→ Generating graph signals

... and any combinations of the above

Pavel Loskot, ZJU-UIUC©2022 29/29

Other Research Topics

More general graph signals

• non-linear, non-Gaussian, non-stationary

• time-varying and stochastic graphs

• signal-dependent noise and/or uncertainty

• discretizing random processes in high-dimensions

• causally constrained signals

Other methods for graph signals

• generating multiple stochastic processes with pairwise constraints

• combining Network Science and signal processing methods

• implementing the methods in computing packages

• implementing distributed signal processing and associated protocols

Thank you!

pavelloskot@intl.zju.edu.cn

