
Efficient Consensus Between Multiple
Controllers in Software Defined Networks 

(SDN)

Stavroula Lalou

Department of Digital Systems

University of Piraeus

Piraeus, Greece

slalou@unipi.gr

Georgios Spathoulas
Dept. of Inform. Sec. and 

Comm. Techn.
NTNU

Gjøvik, Norway
georgios.spathoulas@ntnu.no

Sokratis Katsikas
Dept. of Inform. Sec. and 

Comm. Techn.
NTNU

Gjøvik, Norway
sokratis.katsikas@ntnu.no



Authors
Stavroula Lalou holds a Diploma of Cultural Technology and Communication from Aegean University of Mytilene since 2007, a MSc in
Computer Science from University of Staffordshire of UK since 2011 and she is a full time PhD Student Department of Digital Systems of
University of Piraeus since December of 2016.

Dr. Georgios Spathoulas holds a Diploma of Electrical and Computer Engineering from Aristotle University of Thessaloniki since 2002, a
MSc in Computer Science from University of Edinburgh since 2005 and a PhD from the Department of Digital Systems of University of
Piraeus since 2013. He is a member of Laboratory Teaching Staff of the Department of Computer Science and Biomedical Informatics of
University of Thessaly since 2014 and he teaches in both undergraduate and postgraduate study programs of the Department. He is also
collaborating, as a post doctoral researcher, with the Critical Infrastructures Security and Resilience group in NTNU CCIS. His research
interests are related to network security, privacy preserving techniques and blockchain technology. He is the co-author of more than 40
publications in peer reviewed journals and conference proceedings. He has also served as Program Committee member in international
conferences and he has taken part in both national and international research programs.

Sokratis K. Katsikas is the Director of the Norwegian Center for Cybersecurity in Critical Sectors and Professor with the Department of
Information Security and Communication Technology, Norwegian University of Science and Technology. He is also Professor Emeritus of
the Department of Digital Systems, University of Piraeus, Greece. He received the PhD in Computer Engineering from the University of
Patras, Greece, the MSc in Electrical and Computer Engineering from the University of Massachusetts at Amherst, USA, and the Dipl.
Eng. Degree in Electrical Engineering from the University of Patras, Greece. In 2019 he has awarded a Doctorate Honoris Causa by the
Dept. of Production and Management Engineering of the Democritus University of Thrace, Greece. In 2021 he was ranked 7th in the
security professionals category of the IFSEC Global influencers in security and fire list. In the past, among others, he has been the Rector
of the Open University of Cyprus; Rector and Vice Rector of the University of the Aegean, Greece; General Secretary of
Telecommunications and Posts of the Hellenic Government; Chair of the National Council of Education of Greece; member of the Board
of the Hellenic Authority for the Security and Privacy of Communications; and member of the Board of the Hellenic Authority for the
Quality and Accreditation of Higher Education. He has authored or co-authored more than 300 journal papers, book chapters and
conference proceedings papers. He is serving on the editorial board of several scientific journals, he has co-authored/edited 46 books
and conference proceedings, and he has served on/chaired the technical programme committee of more than 800 international
scientific conferences. He chairs the steering committee of the ESORICS conferences and he is the Editor-in-Chief of the International
Journal of Information Security (Springer).



Aims and Contributions of our paper

• The use of a single SDN controller offers flexibility and efficiency in network management but leads to problems such
as single points of failure and scalability issues. Multiple SDN controller architectures helps to address the above issues.
The synchronization of the network state information among controllers is a critical problem, known as the controller
consensus problem. To synchronize the network information between controllers, a proper consistency model should
be chosen. Strong consistency and eventual consistency are two consistency models commonly used in distributed
systems.

• In this paper, we introduce a novel mechanism that supports the operation of multiple controllers in an SDN network.

• The mechanism achieves network flexibility and enhances network management; it also synchronizes the network
state between different controllers, while addressing single point of failure, fault tolerance and scalability issues. To
demonstrate the practicality of the proposal, we present an implementation with the Raft algorithm for state machine
replication, whose performance we evaluated and compared to that of an existing alternative by means of
experimentation.

The contribution of this paper is:

• The analysis of the existing mechanisms and protocols for SDN networks

• The definition of the consensus problem for distributed SDN controllers.

• The introduction of a mechanism that supports high throughput, dynamic view changes, fault tolerance, and controller
synchronization in multiple SDN controllers setups.



SDN Architecture
• The control and data planes are decoupled. Control

functionality is removed from network devices that will
become simple (packet) forwarding elements.

• Forwarding decisions are flow-based, instead of
destination-based. A flow is broadly defined by a set of
packet field values acting as a match (filter) criterion and a
set of actions (instructions). In the SDN/OpenFlow context,
a flow is a sequence of packets between a source and a
destination..

• Control logic is moved to an external entity, the socalled
SDN controller or Network Operating System (NOS). The
NOS is a software platform that runs on commodity server
technology and provides the essential resources and
abstractions to facilitate the programming of forwarding
devices based on a logically centralized, abstract network
view. It is similar to that of a traditional operating system].

• The network is programmable through software
applications running on top of the NOS that interacts with
the underlying data plane devices. This is a fundamental
characteristic of SDN, considered as its main value
proposition.



Raft Consensus Algorithm

• Raft protocol tries to solve and that is achieving Consensus. Consensus means
multiple servers agreeing on same information, something imperative to
design fault-tolerant distributed systems.

• In Multiple SDN controllers Raft can ensure scalability and consistency among
controllers.

• The Raft algorithm, is a significant consensus algorithm for for state machine
replication and managing a replicated log.

• A leader election algorithm is integrated into the Raft algorithm to ensure
consistency.

• Raft separates the key elements of consensus, such as leader election, log
replication, and safety, and it enforces a stronger degree of coherency to
reduce the number of states that have to be considered in order to reach
consensus.

• It also includes a mechanism for changing the cluster membership, which uses
overlapping majorities to guarantee safety.

• There are three different node states, namely leader, candidate, and follower.



Our Proposal
• The proposed mechanism implements a novel network of multiple

controllers using the Raft consensus algorithm. It supports the
connection and coordination of multiple distributed SDN controllers to
serve as backup controllers in case of a failure.

• Multiple controllers allow data load sharing when a single controller is
overwhelmed with numerous flow requests. In general, our approach can
reduce latency, increase scalability, and fault tolerance, and provides
enhanced availability in SDN deployments.

• The proposed mechanism consists of a set of independent controllers
(nodes), each one of which stores the required data in its memory. Each
controller (node) is assigned with a unique id. In our implementation and
test scenario we used a number of nodes in different states.

• Each one can be in one of three different states:

1. Master: In the Master state the node manages and controls the
network while it can also process data and send update information
to the other controllers.

2. Candidate: the Candidate state the node can send and receive data
to/from the other nodes. A Candidate node with the updated data
can potentially transit to Master state if the current Master node
fails.

3. Worker: Finally in the Worker state the node passively receives data
from Master or Candidate nodes.



Our Proposal

• Using Raft consensus algorithm If a Master node fails, the Raft election process is initiated to elect a new Master
node and avoid single point of failure effects. In this process a node in Candidate state will be elected and will act as
Master node, while the previous Master node will switch to Candidate state. Through this process the system
maintains its stability and fault tolerance.

• When the Master Controller receives a series of data, a broadcast process is initiated to send such data to all nodes
in the network and update information in all controllers accordingly.

• Information is stored in the memory of the Master controller and its initial state is defined as not read.

• Master node sends data to all Candidate nodes and the latter forward such data to their neighboring Worker nodes.

• Master node monitors if all Candidate nodes have received and stores the new data to ensure that all of them have
an updated memory.

• Each Candidate node makes sure that it records newly sent data, while it also monitors data records to avoid
duplicate ones. Consequently, each Candidate node sends data to attached Worker nodes. During this process, the
same approach is followed to ensure successful delivery of data to all nodes.

• When all nodes have successfully forwarded all data, the mechanism transits to an ”OK” state when all controllers
have the same data stored in memory.

• When a controller receives new data, then it stops being in the “OK” state and data shall be sent to the other
controllers and workers (neighbor nodes) of the mechanism according to the procedure which has been described
previously.



Data input

• Inputs are introduced to the SDN multiple controllers network by clients (nodes). When new data are 
introduced in the mechanism by a node, according to the Raft protocol, such data is forwarded to the 
Master Controller. Once the

• Master Controller receives a series of information, it logs and replicates these to all the mechanism 
controllers, which store such data in their memory.

The main processes that nodes operate upon to maintain consistency, stability, and availability are the 
following:

• The read process, that reads from the mechanism memory and checks records and if those have been 
successfully distributed to others.

• The send process that sends data to other controllers.

• The send-to-all process, that is responsible for iteratively sending data to all neighboring controllers.



Raft Consensus Algorithm in our system

• In the proposed mechanism the main entity is the Raft node which shall be deployed along with each
SDN controller in an SDN setup. Each node keeps in its memory a set of records which adhere to the
structure record (data, send).

• The variable data holds the information to be exchanged and the variable send is Boolean and is used
to flag whether a specific record has been successfully forwarded to the network.

• Nodes are identified by a unique id.

• The Raft consensus algorithm is used to coordinate the sharing of information between nodes. It
defines the creation of a group of controllers (candidates) and the required processes to elect one
leader the Master controller. The Master is the one who manages the data flow in the mechanism and
leads the group if it is active.

• If the Master node fails, then a new Master node must be elected through the mechanism process.
Specifically, a time is defined in which the Master sends a message to the other controllers. If the
message does not arrive in time, a Controller node sends a message requesting to become the Master
node. In this case the other controllers respond, and the specific node is designated as the Master
node.



Performance evaluation
Experimental Setup 

• To evaluate the performance of the proposed mechanism we conducted a network simulation. Also we compare 
it with other mechanisms in terms of consensus time, distribution time, data access time and presenting test 
results.

• We have run an experiment to assess the time response of the algorithm. We first run an experimental
simulation of a failure scenario in which the proposed algorithm is executed for 100 sec for a mechanism with 30
controllers, 10 of which run as Master nodes and 20 run as Worker nodes. We check that data is being
transferred correctly between nodes. In this scenario we assume that at a specific time point, around 20 sec after
the start, the master node fails. The main objective is to maintain mechanism stability at all times and avoid the
effects of a single point of failure.

• To extend the initial scenario, another test was also executed, in which the newly elected Master nodes drop at 
time points around 20 sec, 30 sec and 60 sec respectively. 

• All nodes have been monitored to test the read and write performance in each node (in Master, Controller or 
Worker states).

• In the tests, all the nodes except those of the original Master node and the Worker nodes connected to it have 
the same data after the initially set Master node crashes. Another node is elected as the new Master node. This 
is repeated a number of times during the execution of the experiment.



Performance evaluation 
Results

• Table II shows the basic features of the proposed mechanism 
in comparison to the CopyCat project and a Paxos-based system 
that were tested. 

• All models are using consensus algorithms and a distributed 
SDN multiple controller architecture. As is shown in Table II, 
through the comparison between the Copycat project and the 
proposed mechanism.

• Copycat requires more computing resources than the 
proposed mechanism and this makes Copycat less reliable for 
large scale networks. 

• The time required for reading, writing and sending data is 
higher than the other two mechanisms. 

• The average time that the Copycat system needs to start and 
elect a Master Controller is 23.23 seconds.



Performance evaluation 
Results

• The consensus time of the proposed 
mechanism is stable.

• Also, the Write/ Send Data time is stable and 
low the proposed protocol needs 10.4 ms. 
Low and stable times for reading and sending 
data can improve the mechanism 
performance and offer a stable and 
functional mechanism architecture. 

• All controllers had the same data even after a 
controller drop in our simulation 
environment of 100 seconds; the network 
maintains its stability.



Performance evaluation 
Results

The test results have shown that for 
the proposed mechanism the 
average required time for Master 
node election is 10.06 ms. It is stable 
and low, as shown in the figure and 
described in previous Table.



Conclusion

• SDN is a promising paradigm for network management because of its centralized network
intelligence. However the centralized control architecture of SDNs raises challenges regarding
reliability, scalability, fault tolerance and interoperability. The existing solutions which were
analyzed in literature are not offering high-throughput, fault-tolerance, and controller
synchronization. We proposed a novel implementation, based on the Raft algorithm, that can
efficiently synchronize the network state information among multiple nodes, thus ensuring good
performance at all times irrespective of the traffic dynamics. Further, the proposed mechanism
supports high-throughput, fault-tolerance, and controller synchronization.

• Our simulation results have shown that the proposed mechanism can support Multiple
Controllers, as it maintains stability (all nodes have the same data, after a Master node failure)
and the average required times are low. The average time it takes to read, write in memory, and
send data to neighbor controllers is low and stable. Also, the time it takes to elect a new
controller is also low. In our proposal, multiple controllers maintain a consistent global view of
the network. This is achieved by employing the Raft consensus protocol to ensure consistency
among the replicated network states maintained by each controller.



References

[1] D. Ongaro and J. Ousterhout, ”In search of an understandable consensus algorithm”, in Proceedings of the 2014 USENIX conference on
USENIX Annual Technical Conference (USENIX ATC’14), USENIX Association, USA, 2014, pp. 305-–320.

[2] D. Kreutz, et al., ”Software-Defined Networking: A Comprehensive Survey”, in Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan.
2015, doi: 10.1109/JPROC.2014.2371999.

[3] L. Lamport, ”The part-time parliament”, ACM Trans. Comput. Syst., vol. 16, no. 2, pp. 133-–169, May 1998,
https://doi.org/10.1145/279227.279229.

[4] A. Abdelaziz et al, ”Distributed controller clustering in software defined networks”, PLoS ONE, Vol. 12, no. 4: e0174715, April 2017,
https://doi.org/10.1371/journal.pone.0174715(2017).

[5] C. -C. Ho, K. Wang and Y. -H. Hsu, ”A fast consensus algorithm for multiple controllers in software-defined networks,” 2016 18th
International Conference on Advanced Communication Technology (ICACT), pp. 1–1, 2016, doi: 10.1109/ICACT.2016.7423293.

[6] D. Dotan and R. Y. Pinter, ”HyperFlow: an integrated visual query and dataflow language for end-user information analysis”, 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05), 2005, pp. 27–34, doi: 10.1109/VLHCC.2005.45.

[7] A. Tootoonchian and Y. Ganjali, ”HyperFlow: a distributed control plane for OpenFlow”, in Proceedings of the 2010 internet network
management conference on Research on enterprise networking (INM/WREN’10), USENIX Association, USA, 2010.



References

[8] R. Y. Shtykh and T. Suzuki, ”Distributed Data Stream Processing with Onix,” 2014 IEEE Fourth International Conference on Big Data and
Cloud Computing, 2014, pp. 267–268, doi: 10.1109/BDCloud.2014.54.

[9] P. Berde et al, ”ONOS: towards an open, distributed SDN OS”, in Proceedings of the third workshop on Hot topics in software defined
networking (HotSDN ’14), Association for Computing Machinery, New York, NY, USA, pp. 1-–6, 2014,
https://doi.org/10.1145/2620728.2620744.

[10] S. H. Yeganeh and Y. Ganjali, ”Kandoo: a framework for efficient and scalable offloading of control applications”, in Proceedings of the
first workshop on Hot topics in software defined networks (HotSDN ’12), Association for Computing Machinery, New York, NY, USA, 19-–
24, 2012, https://doi.org/10.1145/2342441.2342446.

[11] K. Phemius, M. Bouet and J. Leguay, ”DISCO: Distributed multi-domain SDN controllers”, 2014 IEEE Network Operations and
Management Symposium (NOMS), 2014, pp. 1–4, doi: 10.1109/NOMS.2014.6838330.

[12] W. Xia, Y. Wen, C. H. Foh, D. Niyato and H. Xie, ”A Survey on Software-Defined Networking”, in IEEE Communications Surveys &
Tutorials, vol. 17, no. 1, pp. 27-51, Firstquarter 2015, doi: 10.1109/COMST.2014.2330903.


