Cooperative Caching in Space Information Networks

dr. Anders Fongen, May 2022 Norwegian Defence University College, Cyber Defence Academy, Lillehammer email: anders@fongen.no

INTERNET2022, Mestre, Italy

Presenter's bio

Anders Fongen

- Associate Professor, Norwegian Defence University College
- Field of research: Distributed Systems, Networking security
- PhD in Distributed Systems, Univ. of Sunderland, UK, 2004
- Career history
 - 5 years in military engineering education
 - 10 years research in defence research (Chief Scientist)
 - 8 years in civilian college (Associate professor)
 - \circ 11 years in oil industry
 - 6 years in electronics industry

Introduction

- The evolution of satellite communication?
 - Application Services ("Cloud Computing in Space")
 - Higher System Complexity (larger state space)
- What are the advantages?
 - Very Low Latency (as low as 3 ms)
 - Global coverage
- Interesting property of a Low Earth Orbit (LEO) system
 - Long idle periods (due to inhabited surface) mixed with traffic peaks
- Viewed as a problem of Distributed Computing
 - having a set of distinct properties

What is a SIN (Space Information Network)?

- A collection of communicating LEO satellites
- Able to serve terrestrial/airborne client
 - Communication services (e.g., IP transport, VoIP, Publish-Subscribe comm.)
 - Discovery Services (DNS, Service Brokering...)
 - Storage Services (Content Distribution Network, caching, session states)
 - Application Services (Collaborating editing, Situational awareness ...)
- Resource constrained / disadvantaged
- Predictable workload and link availability
- "Mobile" system: Stationary clients, mobile infrastructure
- Rapid hand-over of client connection and *client state*

Importance of Discovery Services in a SIN

- Performance of Discovery Services important to overall performance
 - e.g., a slow DNS service can hamper a well-tuned Web service
- Discovery Services will often employ caching to a large extent
- Caches kept in satellites have different properties
 - Ground clients constantly see "new" satellites (handovers etc.)
 - Caches are **trained** by clients all over the planet
 - Caches serve a huge population (storage restraints)
 - over time during orbit
 - at any moment (inside footprint)
- Solution: Distribute and coordinate caches between satellites

Population "heat map" from satellite footprint

Ĭ

Caches serve a *Scale Free Distribution* of queries

SFD predicts that a relative **frequency** of a (query) term is inversely proportional to its **rank**

The SFD predicts that the observed frequency of a query term is inversely proportional to its *rank* r. The relative frequency f of the term t with rank r is expressed as

$$f(t_r) = \frac{a}{r} \tag{1}$$

where the value of a is determined so that

$$\sum_{r=1}^{v} \frac{a}{r} = 1 \tag{2}$$

and v indicates the size of the vocabulary in use.

SFD causes caches to train faster

Size of vocabulary (v)=20000

Sum frequency for the **105** highest ranked terms=**0.5**

Last-recently-used (LRU) replacement during entry insertion only **marginally** improves the hit rate

Caches in satellites constantly change audience

- Satellites in orbit serves the entire planet during one day
- Caches are trained through a diversity of client request
 - language, culture, time of day
- Total audience is immense
 - need to aggregate storage from many satellites
 - e.g., from those who fly in **formation**
- Cooperative caches from 7 satellites to increase storage space
 - Clusters are not disjoint, every satellite is member of 7
- Satellites with same role/color exchange cache information
 - Called same-color-merge

Cache performance in a satellite constellation

- Purple lines: Distributed cache based on hash values (modulus 7)
- Green lines: Included same-color-merge
- **Green line shows faster training** important due to diversity of query term distribution

Conclusion

- Cache performance is essential in a SIN
 - Satellites will always be a "slave" replica
 - Well suited for cooperative caching, with some adaptations
 - Performance in a SIN is **nearly the same** as with a "stable" term distribution
- What else need to be solved for a SIN to be useful?
 - Handover / state-transfer
 - Robustness in the presence of faulty satellites
 - Protection, authentication and sharing
 - Routing around densely populated regions
 - Application design patterns (delay-sensitive vs. delay-tolerant activities etc.)