

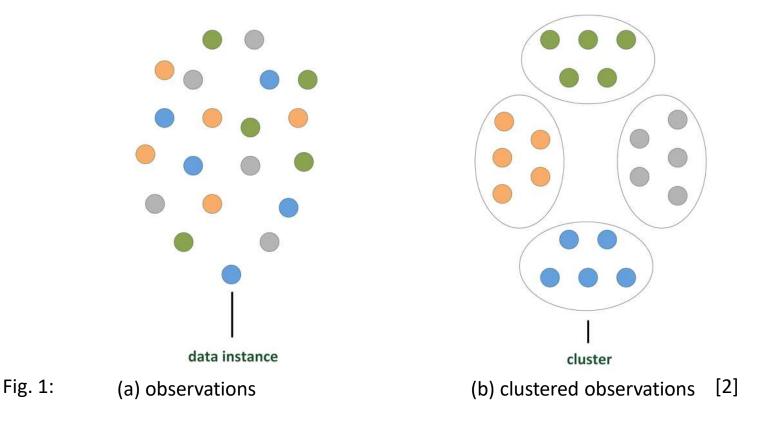
Challenges in P2P Data Management: Clustering

Vesna Šešum-Čavić

University of Belgrade Faculty of Civil Engineering <u>vsesumcavic@grf.bg.ac.rs</u> www.complang.tuwien.ac.at/vesna

- Associate Professor at University of Belgrade
- Research interests: swarm intelligence, evolutionary computation, network optimization, p2p systems, scalable distributed systems, theory and design of algorithms, combinatorial optimization, complex systems, selforganization, and multi-agent systems
- Chair of IEEE Women in Computational Intelligence in 2019 and member of the IEEE Women in Engineering Committee as well as IEEE CIS Member Activities Committee;
- Associated Editor of IEEE Transactions on Emerging Topics in Computational Intelligence (2019) and IEEE Open Journal of Intelligent Transportation Systems

Data management in Peer-to-Peer (P2P) systems


- This is a challenging issue due to the scale of network and extremely high dynamics
- There are many research issues regarding data management in P2P systems detected as [1]:
 - Indexing
 - Data integration
 - Query processing
 - Data replication
 - Clustering
 - Incentive mechanisms
 - etc.

About Clustering

- A method of unsupervised learning → no training step required
- Grouping collection of observations in smaller subsets

Clustering in P2P (1)

- P2P systems have capability of self-organization and fault-tolerance → a demand for an adaptive network topology due to churn [1].
- Peers in a P2P system are autonomous [10]
 - Therefore, characteristics of P2P systems make clustering a challenging task.
 - Autonomy is violated by data clustering.
- Very dynamic nature of P2P environments [1,6,7]
 - Another concern for the application of clustering.
 - Clusters needs to dynamically adapt to the frequent changes in peer populations and their data.

Clustering in P2P (2)

- Further concern is the lack of global knowledge of data and peer interests
 - A serious difficulty in forming clusters in P2P systems.
- We can differentiate two types of clustering in P2P:
 - Data clustering
 - Peer clustering

Data Clustering

- Data items with common attributes or properties can be grouped together → data clusters.
- The main goal of clustering:
 - To reduce the communication cost in query processing.
 - Related data are placed in nearby locations.
- In *structured* P2P systems, it is possible to store similar data at the same or neighboring peers by using an order-preserving hash function [3].
- What to do in *unstructured* P2P systems?

Load Clustering (1)

- Load clustering deals with the clustering of work loads in a computer system.
- We derived it from data clustering [4]:
 - data clustering
 - group and stores similar data
 - rather static
 - load clustering
 - not only attributes of data, but also consideration of the payload
 - group, temporarily store and process similar requests and reply
 - highly dynamic
- Benefits for applications (e.g., better performance)

- It makes further optimizations of the load distribution based on the content of the load items [4]:
 - A single load item → a task that consists of several attributes (e.g. a certain priority), has a payload, a dynamic life cycle and is handled by a computer or processor.
- The **goal**:
 - Cluster loads not only on the basis of simple attributes, but also take into consideration the payload as well as the dynamic.
 - Increase performance by allowing a worker in a computer system to process not only a single load at once but a cluster of loads which are similar.

- Load clustering systems are complex systems
 - They should be self-organizing and adaptive, and capable to flexibly adapt to dynamically changing loads and resources.
- There are many load clustering scenarios
 - Different algorithms and configurations are needed to satisfy different kinds of load clustering scenarios.
- Self-Initiative Load Clustering Agents (SILCA) [4] a load clustering framework that provides the possibility for plugging and benchmarking different clustering algorithms
 - It is based on autonomous agents with decentralized control and a blackboard based communication mechanism.

- Design of a general software architecture framework
 [2,4]
 - component-based
 - pattern-oriented solutions

- \rightarrow "plug"-able algorithms and policies
- \rightarrow composition towards different

agent-based

- \rightarrow adaptive
- space-based middleware \rightarrow decoupling, autonomy, agility
- Evaluation through benchmarking
 - comparing different
 - algorithms and combinations
 - network topologies
 - parameter settings

- A composable and agile software architecture pattern for load clustering
- Problem independent and allows for plugging different clustering algorithms
- Basic SILCA consists of several sub-patterns, implemented in a spacebased architectural style,
 - decoupling of the agents
 - autonomic behavior of agents
- This allows finding the best algorithm for each specific problem.

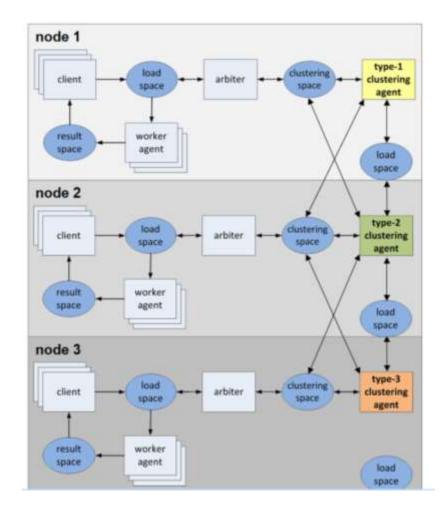


Fig 2. SILCA pattern composition [4]

Algorithms applied

 Hierarchical, K-Means, Fuzzy C-Means, Genetic K-Means, Ant K-means

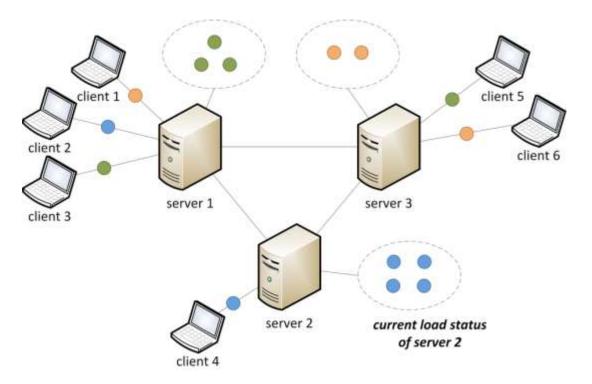
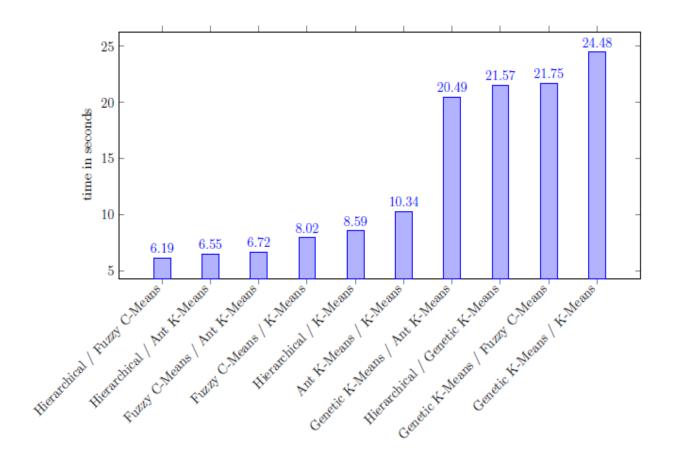



Fig. 3: Load Clustering [2]

Comparison

Fig. 4: Comparison of algorithms combinations in SILCA [4]

- The combination of the Hierarchical algorithm with any other, except the Genetic K-Means algorithm, leads to a good execution time.
- For small networks , the unintelligent Hierarchical Clustering showed the best results.
- For large and more complex networks, an intelligent approach will help.

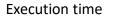
use-case	metric	the most successful algorithm(s)
Load Clustering	absolute time	Hierarchical /Fuzzy C-Means (amount of load = 20, chain topology)

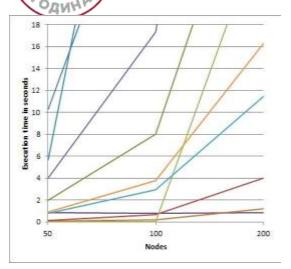
- Usualy, peers are placed randomly or based on their geographical position in a P2P network →

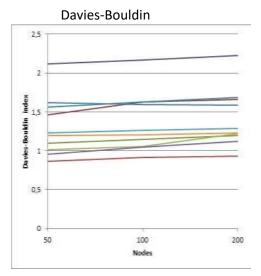

 a performance bottleneck →
 extremely poor performance
- This problem can be solved by using peer clustering.
- Peer Clustering aims to group peers, which have certain characteristics in common, together as neighbors.
- Peer Clustering is a highly dynamic procedure as peers are leaving and entering the network dynamically.

- As a consequence, query performance can be significantly improved compared to a random network topology [5]:
 - Requests are routed more efficiently and only to nodes which are likely to fit the request.
 - If it is possible to find a cluster that contains a node, which should fit the request, query flooding through the whole network is not necessary.
 - Consequently, the workload on nodes, which are probably not fitting the request, can be reduced.

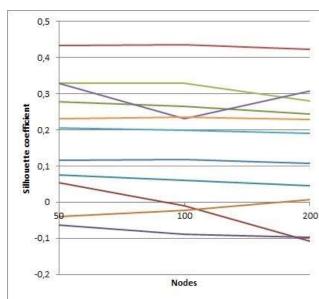
- Self-Initiative Peer Clustering Agents (SIPCA) [5] a peer clustering framework for unstructured P2P networks.
- It allows plugging of different peer clustering algorithms with their easy exchangeability and enable systematic benchmarking and comparison of these algorithms.
- It is problem independent → it should be used to find the best suiting algorithm for a specific problem.

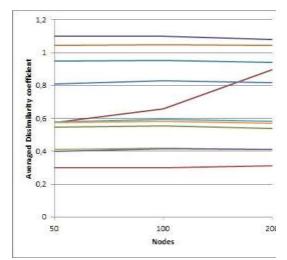


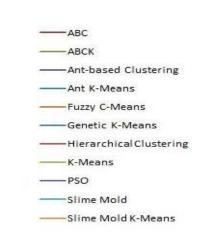

Algorithms applied

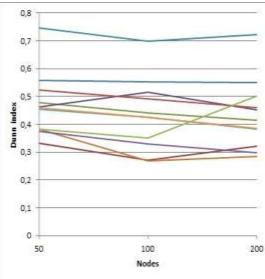

- The following conventional and swarm-based algorithms are competitively benchmarked, evaluated and compared [5]:
 - Slime Mold and Slime Mold K-Means, Artificial Bee Colony, Artificial Bee Colony combined with K-Means, Ant-based Clustering, Ant K-Means, Fuzzy C-Means, Genetic K-Means, Hierarchical Clustering, K-Means and Particle Swarm Optimization.
- The metrics used for the evaluation are [5]:
 - Execution time, the Davies-Bouldin index (DBI), the Dunn index (DI), the silhouette coefficient (SC) and Averaged Dissimilarity coefficient (ADC).

Comparison






Silhouette coefficient


Averaged Dissimilarity coefficient

Legend

Dunn index

Results

use-case	metric	the most successful algorithm(s)
Peer Clustering	absolute time	Fuzzy C-Means, Ant-based Clustering, Hierarchical Clustering, Slime Mold and Slime Mold K-Means
	Davies- Bouldin index	Hierarchical Clustering
	Dunn index	Ant K-Means
	Silhouette coefficient	Hierarchical Clustering
	Averaged Dissimilarity coefficient	Hierarchical Clustering

Results

- Slime Mold and Slime Mold K-Means scale very well regarding execution time and effectiveness.
- Those two algorithms never provide unwanted massive variation in clustering effectiveness results.
- Hierarchical Clustering algorithm outperforms all other implemented algorithms.
- A combination of Slime Mold with Hierarchical Clustering
 → Hierarchical Clustering algorithm thoroughly provides
 top results in terms of time and effectiveness.

Summary – Challenges (1)

- Huge complexity → one of the main characteristics of nowadays distributed systems.
- Intelligent metaheuristics support optimization and robustness of highly dynamic distributed systems.
- The problem of fair comparison and evaluation of different approaches that use different metaheuristics with a huge number of parameters

Summary – Challenges (2)

- One of the prominent challenges in the P2P data management is the problem of clustering.
- We can differentiate between two similar scenarios:
 data → load clustering & peer clustering
- Requirements on the evaluation methodology [8,9]:
 - Provisioning of a general framework
 - Composability of the architecture
 - Autonomy and Self-Organizing Properties
 - Support of arbitrary configurations
 - Benchmarking in different environments
 - Possibility of reconstructing the solution

Summary - Perspectives

- A methodology for the evaluation of set of algorithms (conventional, swarm-based, etc.) in distributed systems [8]:
 - a high-level abstraction of the problem's communication in form of composable, agent-based coordination patterns
 - generic and flexible components based on these patterns
 - a framework as a composition of components
 - flexibly exchange of algorithms through "plugging"
 - identification of configuration and evaluation parameters
 - systematic evaluation of different configurations of algorithms, topologies and parameters

Selected References

- Ulusoy O. "Research issues in Peer-to-Peer data management," 2007 22nd international symposium on computer and information sciences, pp. 1-8, 2007.
- 2. Kühn E., "What is the Difference between Load Balancing and Load Clustering?" Coordination 2012 (Slides).
- Koloniari G., Pitoura E. "Peer-to-Peer Management of XML Data: Issues and Research Challenges", ACM SIGMOD Record, vol.34, no.2, pp.6-17, 2005.
- Kühn E., Marek A., Scheller T., Šešum-Čavić V., Vögler M. "A Space-Based Generic Pattern for Self-Initiative Load Clustering Agents", 14th International Conference on Coordination Models and Languages, Sweden, 2012.
- 5. Fagagnini L., "Self-Initiative Peer-Clustering Agents", Diploma Thesis, TU-Vienna, 2021.

Selected References

- 6. Crespo A., Garcia-Molina H., "Semantic Overlay Networks for P2P Systems", Technical report, Computer Science Department, Stanford University, 2002.
- 7. Khambatti M., Dong Ryu K., Dasgupta P. "Structuring Peer-to-Peer Networks Using Interest-Based Communities". International Workshop on Databases, Information Systems and Peer-to-Peer Computing (DBISP2P), pp.48-63, 2003.
- 8. Kühn E., Šešum-Čavić V. "A Framework-Based Approach for Flexible Evaluation of Swarm-Intelligent Algorithms", Women in Computational Intelligence, Key Advances and Perspectives on Emerging Topics, Springer, pp. 393-412, 2022.
- 9. Šešum -Čavić V., "Handling Complexity in Some Typical Problems of Distributed Systems by Using Self-organizing Principles", Studies in Computational Intelligence, Computational Intelligence, Merelo, J.J., Garibaldi, J., Barranco, A.L., Warwick, K., Madani, K. (Eds.), pp. 115-132, 2021.
- 10. Androutsellis-Theotokis S., Spinellis D. "A survey of peer-to-peer content distribution technologies". ACM Comput. Surv., 36(4):335–371, 2004.