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Plan of this presentation

What Evolution and Durability mean

What is needed:

Some changes to SQL

Simplification of the security model

Practical steps for Big Live Data

Conclusions

 Next: DATA EVOLUTION ..
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Evolution and Durability
 At first sight these look like “complementary” notions

 Like position vs momentum, truth vs clarity

 For the best sorts of data, both are needed

 What is the value? What was it before? Why changed?

 Patient records, bank accounts, scientific results, guidelines

 Copies, models and hearsay are likely to be wrong

 Insist on correctness rather than availability

 This talk is about new approach to DBMS implementation

 Taking account of changes since 1970s

 Proof of Concept in StrongDBMS and PyrrhoDB (in progress)

 Full references in notes pages of these slides and at end

 Data evolves
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Evolving data

Always the focus of Relational DBMS

Customer accounts, scientific results

Shared access and long-term durability

Standards development continues today

With a cost: durability, backward compatibility

 Trend to use universal types, time, 
locale

Big Data focus on metadata and 
semantics

Databases need to include such aspects

 Some use cases
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Big data: serious use cases
 Raw scientific and administrative data

Carried on the public web, often real time

DNA signatures of new Covid variants

Data from tsunami observatories

 Treatment history of seriously ill patients

 Fluid flow computations

 Steel plates used in a tower block, ship

Available intensive care equipment

A particular sensor in the Internet of Things

 We would like..
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A wish list for SQL support
 Search current data from named servers

 Search by metadata (RDF, provenance)

 Results include provenance and ownership

 Remote updates (if permitted) handled by
owner

 Minimise data traffic, load on remote servers

 Allow for transformation during retrieval

 With inverses for updates if permitted

 Changes securely transacted and durably
recorded

 DBMS need to evolve
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DBMS need to evolve too
 Durable storage is for what we want to keep

 Don’t use it for intermediate results or indexes

 Commits are added to the transaction log

Nothing else is ever written to durable storage

 Make better use of the Internet service

 Identify data ownership, provenance, auditing

 Derive results from sources, not clones/copies

 Data is more durable than systems, devices

 Legacy vs. history, alter vs. replace

 Access data at its source: don’t use ETL 

 SQL needs to evolve
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Better standards for DBMS
On the next few slides we discuss the following ideas

 Validate transaction serialization

 Support more of SQL standard (ISO 9075)

 Including side effects in atomicity rule

 Constraints, cascades, triggers

 Definer’s role for each step of execution

 A novel proposal to help apply SQL’s security model 

 Generalize the data type system

 Support metadata directly in SQL 

 For all database objects including subtypes

 Example: Specify inverse and monotonic functions

 Allow remote access to databases in SQL

 Include remote tables in transaction control

 Serialized transactions



11

Serialized Transactions
 The goal of any DBMS 

 Should be to serialize transactions

 Many users making changes

 Could lead to chaos

 Transactional systems avoid this 

 cost of ~9% performance reported on some commercial systems

 Alas: Business customers don’t think this is worthwhile 

 Isolation levels defined in ISO standard
 READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE

 Textbooks say serializable is needed

 But immediately settle for much less 

 A serialized transaction log (StrongDBMS, Pyrrho) ☺

 Even better: Guarantees isolation by preventing conflicts

 What are conflicts?
11
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Managing transaction conflict

Changes to the same database object

 For tables we have fine granularity:

Report conflict if any columns read have 

been updated by another transaction

 If only specific rows read, limit the above 

checks to these

 In 2021 PyrrhoDB demo with 50 clerks

 Showed a high-concurrency version of TPC-C

 The algorithm was re-implemented this year 

using two simple trees for columns and rows

 Side effects

https://youtu.be/0YaU59LvgLs
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Side effects and atomicity
 Few DBMS implement this rule of SQL (sec 4.41) 

 Consequential actions are part of transaction

 Cascades for DROP, DELETE, UPDATE constraints

 DEFERRED actions should be done before transaction is 
committed

 NO ACTION should be prohibited

 Side effects of evaluating constraints 

 Condition handlers, exceptions

 Anything done by triggers

 Recall that changes during a transaction are not visible 
to other users

 But may throw exceptions that abort the transaction

 All become visible on COMMIT

 Next: The Security model
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The SQL security model

Most businesses use app-level security

Many have tried to implement roles

SQL mandates Users and Roles

Many kinds of privileges on DB objects

But few suggestion on how to do this well

We offer some suggestions here

We assume operating system is secure

Authenticates users (DBMS shouldn’t)

And secure communications over TCP

 What we would like
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From user model to roles
 US Department of Defense Orange Book

 Focus on user responsibility and security

 DBMS should focus on database objects

 Roles offer privileges on objects

 And Users are allowed to use Roles

 E.g. Access to all Sales or Finance tools, data

 Some suggestions:

 User can use only one role at a time

Means that people can substitute for sick colleague

 Auditing of all actions logs user and role

 Facilitates investigation, remedies for bad actions

 Avoid external routines: ensure DBMS in control

 Use Definer’s role
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Definer’s role
 Roles use different jargon and 

conventions

Naming of objects can depend on roles

 Focus on creators of database objects

Methods, tables, constraints, triggers

 They will use conventions of their role

 The finished object is then grantable

 Such code will work best in that role

Other staff might need to be given access

But surely not to all the underlying detail!

 Role for Execution
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Standard implementation

Evaluation of expressions uses roles

Object constraints and triggers

 Invoked in background, use definer role

 The SQL standard has a context stack

New stack frames with correct privileges

added on invocation, removed on return

All data is passed in

Schema objects use their definer’s role

 The data type system
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Generalize the type system
 SQL’s compatibility rules require equal precision and string length

 Should allow to alter columns to greater length

 Should allow to alter seconds precision etc

 SQL allows the definition of subtypes

 Of user-defined types using UNDER

 Should regard CHAR(5) as a subtype of CHAR

 Should regard a user defined type as a subtype of its underlying type

 Where a user defined type is expected, a subtype can be assigned

 This should be possible for general subtypes

 It should be possible to have subtypes of predefined types 

 And row types

 SQL already allows type predicates (OF) and create table of type

 Metadata support
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Metadata

Experimental in Pyrrho

Almost any DDL command can add or 

drop metadata

Currently 24 metadata ids, some with args

Most affect HTTP service or XML/JSON output

Some for updatable views etc (e.g. 

INVERTS)

If a view V transforms the value of a column, it 

will not be updatable unless there is an inverse 

transformation back to the base table’s format

 Big Live data
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Big Live Data
 If your data originates in lots of databases

 E.g. Sales or product data from subsidiary 
companies

 You could copy the data centrally
 Extract-Transform-Load/Big Data

 But, if it keeps changing this is not good
 The durable record should be accessed now

And leave data where it is evolving (or 
curated)

 The available data is provided as a View
And accessible using HTTP and JSON

 Making it easier
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Making big live data easier
 Today this needs detailed programming

 The following slides offer an SQL solution

 Define a VIEW for filtering specific data of interest

 Allow specific remote users some access to it

 Maybe including updates for known users

 Then aggregations and filters do not need programming

 Just write the SQL you want as if it was a local database

 Many examples in the Pyrrho v7 documentation

 A derived table
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A derived table 

CID A B C …

D1

D1

D2

D3

D3

D3

 Next: Contributing DBMS

D1

D2

D3

Columns from D’s renamed and values probably transformed

Derived = not actually stored centrally

(Contributors take responsibility for renaming columns and 

transforming data to suit us as their schemas will all be different)
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Defining a contribution

 Probably, each contributor creates a VIEW

 Out of data from one or more actual tables

CREATE VIEW (A,B,C..) AS ….

 Next: The central view

A B C …

Can identify each contributor in the 

result view with a contributor id CID 

and maybe other information
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Centrally we then have

 A row type CID,..,A,B,C,.. 

 The local row contains remote data 

 A local table T of contributor details, URLs

 Next: Dividing responsibility

CID … URL

D1 … URL for D1’s data

D2 … URL for D2’s data

D3 … URL for D3’s data

T:

CREATE VIEW V OF (CID..,A,B,C..) AS GET USING T
 OF clause gives V’s row type (specifying column data types) 

 Includes all columns from T except the last (the URL)

 The remaining columns specify the data from the remote view
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Division of responsibility

 Next: View-mediated access

D1

DBMS

Views contributed over HTTP transformed

to a common schema

Contributed data remains under D1’s

control – D1 retains responsibility

D1 interprets requests for change and

inverts the transformations if it can

HTTP

D1’s API

No programming!

API

View configures HTTP access

Change request sent to D1,..
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What happens with REST

REST operations use standard formats

For transactions, use RFC7232 (ETags)

For rows, we use JSON documents

An item for each column of the row

Why not add some extra columns for
the Registers in that row?

A Register for each occurrence of an
aggregation function in the select list

With a JSON representation

 Next: an example
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A simple example
 Suppose we have a VIEW WW(E,F). Instead of select E,F we want

select sum(e)+char_length(f),f  from ww group by f

 Simply send the query as is: Each database returns its answer 

 The data from each has extra fields: The Registers for aggregates by group

 Unpacked and combined by Pyrrho

 More about registers
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Extra Register fields
 The local and remote servers see the same value

expression

 So the registers are supplied in the left-to-right
ordering

 As a Json document with the following items as 
needed:

 The string value accumulated by the function if any

 The value of MAX, MIN, FIRST, LAST, ARRAY

 A document containing counted values for a multiset 
value (can also be used for median, mode etc)

 The value of a typed SUM

 The value of COUNT

 The sum of squares (if required for standard deviation 
etc)

 Transactions again
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Transactions and REST
 All data needs a single transaction master

 Because of the two-army problem

 Transactions start from one database

 Called the local database (i.e. local server)

 There is no way to address a remote object directly

 Some fields may come from remote views

 Possibly updatable via REST over HTTP1.1 (safe)

 At most one remote update can be allowed

 When the local commit is called

 Local database locked,  validation performed

 The single remote update is done via HTTP1.1

 And then the local commit can complete/unlock

 Next: Object-Orientation
30
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Conclusions

 This research provides new DBMS tools

Serialized transactions, RESTViews etc

 In PyrrhoDB v7.01 currently alpha

Big Live Data implementation

Providing better real-time owned behavior

Optimized for aggregations of remote 

views

Versioned API for transaction-safe apps

Schema verification (incl RESTView soon)

 Next: Links
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Links
Crowe, M. K., Matalonga, S.: Shareable Data 
Structures, on 
https://github.com/MalcolmCrowe/ShareableDataS
tructures

 includes source code for StrongDBMS, PyrrhoV7alpha 
and documentation

Crowe, M. K., Laux, F.: Implementing True Serializable 
Transactions, Tutorial, DBKDA 2021

 https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s

 https://www.iaria.org/conferences2021/filesDBKDA21/

 Version 6.3: https://pyrrhodb.uws.ac.uk

 50 clerks demo: https://youtu.be/0YaU59LvgLs

 Pyrrho blog: https://pyrrhodb.blogspot.com

 Next: References
32

https://github.com/MalcolmCrowe/ShareableDataStructures
https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s
https://www.iaria.org/conferences2021/filesDBKDA21/
https://pyrrhodb.uws.ac.uk/
https://youtu.be/0YaU59LvgLs
https://pyrrhodb.blogspot.com/


33

References
Crowe, M. K., Laux, F.: Reconsidering Optimistic Algorithms for 

Relational DBMS, DBKDA 2020

Crowe, M. K., Matalonga, S., Laiho, M: StrongDBMS, built from 

immutable components, DBKDA 2019

Crowe, M. K., Fyffe, C: Benchmarking StrongDBMS, Keynote 

speech, DBKDA 2019

Crowe, M. K., Laux, F.: DBMS Support for Big Live Data, DBKDA 

2018

Crowe, M.K., Begg, C.E., Laux, F., Laiho, M: Data Validation for Big 

Live Data, DBKDA 2017

Krijnen, T., Meertens, G. L. T.: “Making B-Trees work for B”. 

Amsterdam : Stichting Mathematisch Centrum, 1982, Technical 
Report IW 219/83

33

https://www.iaria.org/conferences2019/filesDBKDA19/MalcolmCrowe_CallumFyffee_Keynote_BenchmarkingStrongDBMS.pdf
https://www.iaria.org/conferences2018/filesDBKDA18/MalcolmCrowe_DBMS_Support.pdf

