
1

Data: Evolution and

Durability
MALCOLM CROWE, FRITZ LAUX

SOFTNET 2022 CONGRESS

 Malcolm Crowe is an Emeritus Professor at the University of the West of Scotland,
where he worked from 1972 (when it was Paisley College of Technology) until
2018.

 He gained a D.Phil. in Mathematics at the University of Oxford in 1979.

 He was appointed head of the Department of Computing in 1985. His funded
research projects before 2001 were on Programming Languages and Cooperative
Work.

 Since 2001 he has worked steadily on PyrrhoDBMS to explore optimistic
technologies for relational databases and this work led to involvement in DBTech,
and a series of papers and other contributions at IARIA conferences with Fritz
Laux, Martti Laiho, and others.

 Prof. Crowe has recently been appointed an IARIA Fellow.

Malcolm Crowe
University of the West of Scotland

Email: malcolm.crowe@uws.ac.uk

2

 Prof. Dr. Fritz Laux was professor (now emeritus) for Database and Information Systems at

Reutlingen University from 1986 - 2015. He holds an MSc (Diplom) and PhD (Dr. rer. nat.) in

Mathematics.

 His current research interests include

• Information modeling and data integration

• Transaction management and optimistic concurrency control

• Business intelligence and knowledge discovery

 He contributed papers to DBKDA and PATTERNS conferences that received DBKDA 2009 and

DBKDA 2010 Best Paper Awards. He is a panellist, keynote speaker, and member of the

DBKDA advisory board.

 Prof. Laux is a founding member of DBTech.net (http://www.dbtechnet.org/), an initiative of

European universities and IT-companies to set up a transnational collaboration scheme for

Database teaching. Together with colleagues from 5 European countries he has conducted

projects supported by the European Union on state-of-the-art database teaching.

 He is a member of the ACM and the German Computer Society (Gesellschaft für Informatik).

Prof. Dr. Fritz Laux
(Retired), Reutlingen University
Email: fritz.laux@reutlingen-university.de

3

https://eu-west-1.protection.sophos.com/?d=dbtechnet.org&u=aHR0cDovL3d3dy5kYnRlY2huZXQub3JnLw==&i=NjA2MmU2NGYwYjBjYmUwZTZlMzUzNGNj&t=NmFLZXNtMDU2NVI5RytLeUp3Z2tzaHRvb1YweURzcG9wWWEyRGVEQ0xoYz0=&h=35c90459daf54f4db46e5a2af80b7f29)

4

Plan of this presentation

What Evolution and Durability mean

What is needed:

Some changes to SQL

Simplification of the security model

Practical steps for Big Live Data

Conclusions

 Next: DATA EVOLUTION ..

5

Evolution and Durability
 At first sight these look like “complementary” notions

 Like position vs momentum, truth vs clarity

 For the best sorts of data, both are needed

 What is the value? What was it before? Why changed?

 Patient records, bank accounts, scientific results, guidelines

 Copies, models and hearsay are likely to be wrong

 Insist on correctness rather than availability

 This talk is about new approach to DBMS implementation

 Taking account of changes since 1970s

 Proof of Concept in StrongDBMS and PyrrhoDB (in progress)

 Full references in notes pages of these slides and at end

 Data evolves

6

Evolving data

Always the focus of Relational DBMS

Customer accounts, scientific results

Shared access and long-term durability

Standards development continues today

With a cost: durability, backward compatibility

 Trend to use universal types, time,
locale

Big Data focus on metadata and
semantics

Databases need to include such aspects

 Some use cases

7

Big data: serious use cases
 Raw scientific and administrative data

Carried on the public web, often real time

DNA signatures of new Covid variants

Data from tsunami observatories

 Treatment history of seriously ill patients

 Fluid flow computations

 Steel plates used in a tower block, ship

Available intensive care equipment

A particular sensor in the Internet of Things

 We would like..

8

A wish list for SQL support
 Search current data from named servers

 Search by metadata (RDF, provenance)

 Results include provenance and ownership

 Remote updates (if permitted) handled by
owner

 Minimise data traffic, load on remote servers

 Allow for transformation during retrieval

 With inverses for updates if permitted

 Changes securely transacted and durably
recorded

 DBMS need to evolve

9

DBMS need to evolve too
 Durable storage is for what we want to keep

 Don’t use it for intermediate results or indexes

 Commits are added to the transaction log

Nothing else is ever written to durable storage

 Make better use of the Internet service

 Identify data ownership, provenance, auditing

 Derive results from sources, not clones/copies

 Data is more durable than systems, devices

 Legacy vs. history, alter vs. replace

 Access data at its source: don’t use ETL

 SQL needs to evolve

10

Better standards for DBMS
On the next few slides we discuss the following ideas

 Validate transaction serialization

 Support more of SQL standard (ISO 9075)

 Including side effects in atomicity rule

 Constraints, cascades, triggers

 Definer’s role for each step of execution

 A novel proposal to help apply SQL’s security model

 Generalize the data type system

 Support metadata directly in SQL

 For all database objects including subtypes

 Example: Specify inverse and monotonic functions

 Allow remote access to databases in SQL

 Include remote tables in transaction control

 Serialized transactions

11

Serialized Transactions
 The goal of any DBMS

 Should be to serialize transactions

 Many users making changes

 Could lead to chaos

 Transactional systems avoid this

 cost of ~9% performance reported on some commercial systems

 Alas: Business customers don’t think this is worthwhile

 Isolation levels defined in ISO standard
 READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE

 Textbooks say serializable is needed

 But immediately settle for much less

 A serialized transaction log (StrongDBMS, Pyrrho) ☺

 Even better: Guarantees isolation by preventing conflicts

 What are conflicts?
11

12

Managing transaction conflict

Changes to the same database object

 For tables we have fine granularity:

Report conflict if any columns read have

been updated by another transaction

 If only specific rows read, limit the above

checks to these

 In 2021 PyrrhoDB demo with 50 clerks

 Showed a high-concurrency version of TPC-C

 The algorithm was re-implemented this year

using two simple trees for columns and rows

 Side effects

https://youtu.be/0YaU59LvgLs

13

Side effects and atomicity
 Few DBMS implement this rule of SQL (sec 4.41)

 Consequential actions are part of transaction

 Cascades for DROP, DELETE, UPDATE constraints

 DEFERRED actions should be done before transaction is
committed

 NO ACTION should be prohibited

 Side effects of evaluating constraints

 Condition handlers, exceptions

 Anything done by triggers

 Recall that changes during a transaction are not visible
to other users

 But may throw exceptions that abort the transaction

 All become visible on COMMIT

 Next: The Security model

14

The SQL security model

Most businesses use app-level security

Many have tried to implement roles

SQL mandates Users and Roles

Many kinds of privileges on DB objects

But few suggestion on how to do this well

We offer some suggestions here

We assume operating system is secure

Authenticates users (DBMS shouldn’t)

And secure communications over TCP

 What we would like

15

From user model to roles
 US Department of Defense Orange Book

 Focus on user responsibility and security

 DBMS should focus on database objects

 Roles offer privileges on objects

 And Users are allowed to use Roles

 E.g. Access to all Sales or Finance tools, data

 Some suggestions:

 User can use only one role at a time

Means that people can substitute for sick colleague

 Auditing of all actions logs user and role

 Facilitates investigation, remedies for bad actions

 Avoid external routines: ensure DBMS in control

 Use Definer’s role

16

Definer’s role
 Roles use different jargon and

conventions

Naming of objects can depend on roles

 Focus on creators of database objects

Methods, tables, constraints, triggers

 They will use conventions of their role

 The finished object is then grantable

 Such code will work best in that role

Other staff might need to be given access

But surely not to all the underlying detail!

 Role for Execution

18

Standard implementation

Evaluation of expressions uses roles

Object constraints and triggers

 Invoked in background, use definer role

 The SQL standard has a context stack

New stack frames with correct privileges

added on invocation, removed on return

All data is passed in

Schema objects use their definer’s role

 The data type system

19

Generalize the type system
 SQL’s compatibility rules require equal precision and string length

 Should allow to alter columns to greater length

 Should allow to alter seconds precision etc

 SQL allows the definition of subtypes

 Of user-defined types using UNDER

 Should regard CHAR(5) as a subtype of CHAR

 Should regard a user defined type as a subtype of its underlying type

 Where a user defined type is expected, a subtype can be assigned

 This should be possible for general subtypes

 It should be possible to have subtypes of predefined types

 And row types

 SQL already allows type predicates (OF) and create table of type

 Metadata support

20

Metadata

Experimental in Pyrrho

Almost any DDL command can add or

drop metadata

Currently 24 metadata ids, some with args

Most affect HTTP service or XML/JSON output

Some for updatable views etc (e.g.

INVERTS)

If a view V transforms the value of a column, it

will not be updatable unless there is an inverse

transformation back to the base table’s format

 Big Live data

21

Big Live Data
 If your data originates in lots of databases

 E.g. Sales or product data from subsidiary
companies

 You could copy the data centrally
 Extract-Transform-Load/Big Data

 But, if it keeps changing this is not good
 The durable record should be accessed now

And leave data where it is evolving (or
curated)

 The available data is provided as a View
And accessible using HTTP and JSON

 Making it easier

22

Making big live data easier
 Today this needs detailed programming

 The following slides offer an SQL solution

 Define a VIEW for filtering specific data of interest

 Allow specific remote users some access to it

 Maybe including updates for known users

 Then aggregations and filters do not need programming

 Just write the SQL you want as if it was a local database

 Many examples in the Pyrrho v7 documentation

 A derived table

23

A derived table

CID A B C …

D1

D1

D2

D3

D3

D3

 Next: Contributing DBMS

D1

D2

D3

Columns from D’s renamed and values probably transformed

Derived = not actually stored centrally

(Contributors take responsibility for renaming columns and

transforming data to suit us as their schemas will all be different)

24

Defining a contribution

 Probably, each contributor creates a VIEW

 Out of data from one or more actual tables

CREATE VIEW (A,B,C..) AS ….

 Next: The central view

A B C …

Can identify each contributor in the

result view with a contributor id CID

and maybe other information

25

Centrally we then have

 A row type CID,..,A,B,C,..

 The local row contains remote data

 A local table T of contributor details, URLs

 Next: Dividing responsibility

CID … URL

D1 … URL for D1’s data

D2 … URL for D2’s data

D3 … URL for D3’s data

T:

CREATE VIEW V OF (CID..,A,B,C..) AS GET USING T
 OF clause gives V’s row type (specifying column data types)

 Includes all columns from T except the last (the URL)

 The remaining columns specify the data from the remote view

26

Division of responsibility

 Next: View-mediated access

D1

DBMS

Views contributed over HTTP transformed

to a common schema

Contributed data remains under D1’s

control – D1 retains responsibility

D1 interprets requests for change and

inverts the transformations if it can

HTTP

D1’s API

No programming!

API

View configures HTTP access

Change request sent to D1,..

27

What happens with REST

REST operations use standard formats

For transactions, use RFC7232 (ETags)

For rows, we use JSON documents

An item for each column of the row

Why not add some extra columns for
the Registers in that row?

A Register for each occurrence of an
aggregation function in the select list

With a JSON representation

 Next: an example

28

A simple example
 Suppose we have a VIEW WW(E,F). Instead of select E,F we want

select sum(e)+char_length(f),f from ww group by f

 Simply send the query as is: Each database returns its answer

 The data from each has extra fields: The Registers for aggregates by group

 Unpacked and combined by Pyrrho

 More about registers

29

Extra Register fields
 The local and remote servers see the same value

expression

 So the registers are supplied in the left-to-right
ordering

 As a Json document with the following items as
needed:

 The string value accumulated by the function if any

 The value of MAX, MIN, FIRST, LAST, ARRAY

 A document containing counted values for a multiset
value (can also be used for median, mode etc)

 The value of a typed SUM

 The value of COUNT

 The sum of squares (if required for standard deviation
etc)

 Transactions again

30

Transactions and REST
 All data needs a single transaction master

 Because of the two-army problem

 Transactions start from one database

 Called the local database (i.e. local server)

 There is no way to address a remote object directly

 Some fields may come from remote views

 Possibly updatable via REST over HTTP1.1 (safe)

 At most one remote update can be allowed

 When the local commit is called

 Local database locked, validation performed

 The single remote update is done via HTTP1.1

 And then the local commit can complete/unlock

 Next: Object-Orientation
30

31

Conclusions

 This research provides new DBMS tools

Serialized transactions, RESTViews etc

 In PyrrhoDB v7.01 currently alpha

Big Live Data implementation

Providing better real-time owned behavior

Optimized for aggregations of remote

views

Versioned API for transaction-safe apps

Schema verification (incl RESTView soon)

 Next: Links

32

Links
Crowe, M. K., Matalonga, S.: Shareable Data
Structures, on
https://github.com/MalcolmCrowe/ShareableDataS
tructures

 includes source code for StrongDBMS, PyrrhoV7alpha
and documentation

Crowe, M. K., Laux, F.: Implementing True Serializable
Transactions, Tutorial, DBKDA 2021

 https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s

 https://www.iaria.org/conferences2021/filesDBKDA21/

 Version 6.3: https://pyrrhodb.uws.ac.uk

 50 clerks demo: https://youtu.be/0YaU59LvgLs

 Pyrrho blog: https://pyrrhodb.blogspot.com

 Next: References
32

https://github.com/MalcolmCrowe/ShareableDataStructures
https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s
https://www.iaria.org/conferences2021/filesDBKDA21/
https://pyrrhodb.uws.ac.uk/
https://youtu.be/0YaU59LvgLs
https://pyrrhodb.blogspot.com/

33

References
Crowe, M. K., Laux, F.: Reconsidering Optimistic Algorithms for

Relational DBMS, DBKDA 2020

Crowe, M. K., Matalonga, S., Laiho, M: StrongDBMS, built from

immutable components, DBKDA 2019

Crowe, M. K., Fyffe, C: Benchmarking StrongDBMS, Keynote

speech, DBKDA 2019

Crowe, M. K., Laux, F.: DBMS Support for Big Live Data, DBKDA

2018

Crowe, M.K., Begg, C.E., Laux, F., Laiho, M: Data Validation for Big

Live Data, DBKDA 2017

Krijnen, T., Meertens, G. L. T.: “Making B-Trees work for B”.

Amsterdam : Stichting Mathematisch Centrum, 1982, Technical
Report IW 219/83

33

https://www.iaria.org/conferences2019/filesDBKDA19/MalcolmCrowe_CallumFyffee_Keynote_BenchmarkingStrongDBMS.pdf
https://www.iaria.org/conferences2018/filesDBKDA18/MalcolmCrowe_DBMS_Support.pdf

