
1

Data: Evolution and

Durability
MALCOLM CROWE, FRITZ LAUX

SOFTNET 2022 CONGRESS

 Malcolm Crowe is an Emeritus Professor at the University of the West of Scotland,
where he worked from 1972 (when it was Paisley College of Technology) until
2018.

 He gained a D.Phil. in Mathematics at the University of Oxford in 1979.

 He was appointed head of the Department of Computing in 1985. His funded
research projects before 2001 were on Programming Languages and Cooperative
Work.

 Since 2001 he has worked steadily on PyrrhoDBMS to explore optimistic
technologies for relational databases and this work led to involvement in DBTech,
and a series of papers and other contributions at IARIA conferences with Fritz
Laux, Martti Laiho, and others.

 Prof. Crowe has recently been appointed an IARIA Fellow.

Malcolm Crowe
University of the West of Scotland

Email: malcolm.crowe@uws.ac.uk

2

 Prof. Dr. Fritz Laux was professor (now emeritus) for Database and Information Systems at

Reutlingen University from 1986 - 2015. He holds an MSc (Diplom) and PhD (Dr. rer. nat.) in

Mathematics.

 His current research interests include

• Information modeling and data integration

• Transaction management and optimistic concurrency control

• Business intelligence and knowledge discovery

 He contributed papers to DBKDA and PATTERNS conferences that received DBKDA 2009 and

DBKDA 2010 Best Paper Awards. He is a panellist, keynote speaker, and member of the

DBKDA advisory board.

 Prof. Laux is a founding member of DBTech.net (http://www.dbtechnet.org/), an initiative of

European universities and IT-companies to set up a transnational collaboration scheme for

Database teaching. Together with colleagues from 5 European countries he has conducted

projects supported by the European Union on state-of-the-art database teaching.

 He is a member of the ACM and the German Computer Society (Gesellschaft für Informatik).

Prof. Dr. Fritz Laux
(Retired), Reutlingen University
Email: fritz.laux@reutlingen-university.de

3

https://eu-west-1.protection.sophos.com/?d=dbtechnet.org&u=aHR0cDovL3d3dy5kYnRlY2huZXQub3JnLw==&i=NjA2MmU2NGYwYjBjYmUwZTZlMzUzNGNj&t=NmFLZXNtMDU2NVI5RytLeUp3Z2tzaHRvb1YweURzcG9wWWEyRGVEQ0xoYz0=&h=35c90459daf54f4db46e5a2af80b7f29)

4

Plan of this presentation

What Evolution and Durability mean

What is needed:

Some changes to SQL

Simplification of the security model

Practical steps for Big Live Data

Conclusions

 Next: DATA EVOLUTION ..

5

Evolution and Durability
 At first sight these look like “complementary” notions

 Like position vs momentum, truth vs clarity

 For the best sorts of data, both are needed

 What is the value? What was it before? Why changed?

 Patient records, bank accounts, scientific results, guidelines

 Copies, models and hearsay are likely to be wrong

 Insist on correctness rather than availability

 This talk is about new approach to DBMS implementation

 Taking account of changes since 1970s

 Proof of Concept in StrongDBMS and PyrrhoDB (in progress)

 Full references in notes pages of these slides and at end

 Data evolves

6

Evolving data

Always the focus of Relational DBMS

Customer accounts, scientific results

Shared access and long-term durability

Standards development continues today

With a cost: durability, backward compatibility

 Trend to use universal types, time,
locale

Big Data focus on metadata and
semantics

Databases need to include such aspects

 Some use cases

7

Big data: serious use cases
 Raw scientific and administrative data

Carried on the public web, often real time

DNA signatures of new Covid variants

Data from tsunami observatories

 Treatment history of seriously ill patients

 Fluid flow computations

 Steel plates used in a tower block, ship

Available intensive care equipment

A particular sensor in the Internet of Things

 We would like..

8

A wish list for SQL support
 Search current data from named servers

 Search by metadata (RDF, provenance)

 Results include provenance and ownership

 Remote updates (if permitted) handled by
owner

 Minimise data traffic, load on remote servers

 Allow for transformation during retrieval

 With inverses for updates if permitted

 Changes securely transacted and durably
recorded

 DBMS need to evolve

9

DBMS need to evolve too
 Durable storage is for what we want to keep

 Don’t use it for intermediate results or indexes

 Commits are added to the transaction log

Nothing else is ever written to durable storage

 Make better use of the Internet service

 Identify data ownership, provenance, auditing

 Derive results from sources, not clones/copies

 Data is more durable than systems, devices

 Legacy vs. history, alter vs. replace

 Access data at its source: don’t use ETL

 SQL needs to evolve

10

Better standards for DBMS
On the next few slides we discuss the following ideas

 Validate transaction serialization

 Support more of SQL standard (ISO 9075)

 Including side effects in atomicity rule

 Constraints, cascades, triggers

 Definer’s role for each step of execution

 A novel proposal to help apply SQL’s security model

 Generalize the data type system

 Support metadata directly in SQL

 For all database objects including subtypes

 Example: Specify inverse and monotonic functions

 Allow remote access to databases in SQL

 Include remote tables in transaction control

 Serialized transactions

11

Serialized Transactions
 The goal of any DBMS

 Should be to serialize transactions

 Many users making changes

 Could lead to chaos

 Transactional systems avoid this

 cost of ~9% performance reported on some commercial systems

 Alas: Business customers don’t think this is worthwhile 

 Isolation levels defined in ISO standard
 READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE

 Textbooks say serializable is needed

 But immediately settle for much less 

 A serialized transaction log (StrongDBMS, Pyrrho) ☺

 Even better: Guarantees isolation by preventing conflicts

 What are conflicts?
11

12

Managing transaction conflict

Changes to the same database object

 For tables we have fine granularity:

Report conflict if any columns read have

been updated by another transaction

 If only specific rows read, limit the above

checks to these

 In 2021 PyrrhoDB demo with 50 clerks

 Showed a high-concurrency version of TPC-C

 The algorithm was re-implemented this year

using two simple trees for columns and rows

 Side effects

https://youtu.be/0YaU59LvgLs

13

Side effects and atomicity
 Few DBMS implement this rule of SQL (sec 4.41)

 Consequential actions are part of transaction

 Cascades for DROP, DELETE, UPDATE constraints

 DEFERRED actions should be done before transaction is
committed

 NO ACTION should be prohibited

 Side effects of evaluating constraints

 Condition handlers, exceptions

 Anything done by triggers

 Recall that changes during a transaction are not visible
to other users

 But may throw exceptions that abort the transaction

 All become visible on COMMIT

 Next: The Security model

14

The SQL security model

Most businesses use app-level security

Many have tried to implement roles

SQL mandates Users and Roles

Many kinds of privileges on DB objects

But few suggestion on how to do this well

We offer some suggestions here

We assume operating system is secure

Authenticates users (DBMS shouldn’t)

And secure communications over TCP

 What we would like

15

From user model to roles
 US Department of Defense Orange Book

 Focus on user responsibility and security

 DBMS should focus on database objects

 Roles offer privileges on objects

 And Users are allowed to use Roles

 E.g. Access to all Sales or Finance tools, data

 Some suggestions:

 User can use only one role at a time

Means that people can substitute for sick colleague

 Auditing of all actions logs user and role

 Facilitates investigation, remedies for bad actions

 Avoid external routines: ensure DBMS in control

 Use Definer’s role

16

Definer’s role
 Roles use different jargon and

conventions

Naming of objects can depend on roles

 Focus on creators of database objects

Methods, tables, constraints, triggers

 They will use conventions of their role

 The finished object is then grantable

 Such code will work best in that role

Other staff might need to be given access

But surely not to all the underlying detail!

 Role for Execution

18

Standard implementation

Evaluation of expressions uses roles

Object constraints and triggers

 Invoked in background, use definer role

 The SQL standard has a context stack

New stack frames with correct privileges

added on invocation, removed on return

All data is passed in

Schema objects use their definer’s role

 The data type system

19

Generalize the type system
 SQL’s compatibility rules require equal precision and string length

 Should allow to alter columns to greater length

 Should allow to alter seconds precision etc

 SQL allows the definition of subtypes

 Of user-defined types using UNDER

 Should regard CHAR(5) as a subtype of CHAR

 Should regard a user defined type as a subtype of its underlying type

 Where a user defined type is expected, a subtype can be assigned

 This should be possible for general subtypes

 It should be possible to have subtypes of predefined types

 And row types

 SQL already allows type predicates (OF) and create table of type

 Metadata support

20

Metadata

Experimental in Pyrrho

Almost any DDL command can add or

drop metadata

Currently 24 metadata ids, some with args

Most affect HTTP service or XML/JSON output

Some for updatable views etc (e.g.

INVERTS)

If a view V transforms the value of a column, it

will not be updatable unless there is an inverse

transformation back to the base table’s format

 Big Live data

21

Big Live Data
 If your data originates in lots of databases

 E.g. Sales or product data from subsidiary
companies

 You could copy the data centrally
 Extract-Transform-Load/Big Data

 But, if it keeps changing this is not good
 The durable record should be accessed now

And leave data where it is evolving (or
curated)

 The available data is provided as a View
And accessible using HTTP and JSON

 Making it easier

22

Making big live data easier
 Today this needs detailed programming

 The following slides offer an SQL solution

 Define a VIEW for filtering specific data of interest

 Allow specific remote users some access to it

 Maybe including updates for known users

 Then aggregations and filters do not need programming

 Just write the SQL you want as if it was a local database

 Many examples in the Pyrrho v7 documentation

 A derived table

23

A derived table

CID A B C …

D1

D1

D2

D3

D3

D3

 Next: Contributing DBMS

D1

D2

D3

Columns from D’s renamed and values probably transformed

Derived = not actually stored centrally

(Contributors take responsibility for renaming columns and

transforming data to suit us as their schemas will all be different)

24

Defining a contribution

 Probably, each contributor creates a VIEW

 Out of data from one or more actual tables

CREATE VIEW (A,B,C..) AS ….

 Next: The central view

A B C …

Can identify each contributor in the

result view with a contributor id CID

and maybe other information

25

Centrally we then have

 A row type CID,..,A,B,C,..

 The local row contains remote data

 A local table T of contributor details, URLs

 Next: Dividing responsibility

CID … URL

D1 … URL for D1’s data

D2 … URL for D2’s data

D3 … URL for D3’s data

T:

CREATE VIEW V OF (CID..,A,B,C..) AS GET USING T
 OF clause gives V’s row type (specifying column data types)

 Includes all columns from T except the last (the URL)

 The remaining columns specify the data from the remote view

26

Division of responsibility

 Next: View-mediated access

D1

DBMS

Views contributed over HTTP transformed

to a common schema

Contributed data remains under D1’s

control – D1 retains responsibility

D1 interprets requests for change and

inverts the transformations if it can

HTTP

D1’s API

No programming!

API

View configures HTTP access

Change request sent to D1,..

27

What happens with REST

REST operations use standard formats

For transactions, use RFC7232 (ETags)

For rows, we use JSON documents

An item for each column of the row

Why not add some extra columns for
the Registers in that row?

A Register for each occurrence of an
aggregation function in the select list

With a JSON representation

 Next: an example

28

A simple example
 Suppose we have a VIEW WW(E,F). Instead of select E,F we want

select sum(e)+char_length(f),f from ww group by f

 Simply send the query as is: Each database returns its answer

 The data from each has extra fields: The Registers for aggregates by group

 Unpacked and combined by Pyrrho

 More about registers

29

Extra Register fields
 The local and remote servers see the same value

expression

 So the registers are supplied in the left-to-right
ordering

 As a Json document with the following items as
needed:

 The string value accumulated by the function if any

 The value of MAX, MIN, FIRST, LAST, ARRAY

 A document containing counted values for a multiset
value (can also be used for median, mode etc)

 The value of a typed SUM

 The value of COUNT

 The sum of squares (if required for standard deviation
etc)

 Transactions again

30

Transactions and REST
 All data needs a single transaction master

 Because of the two-army problem

 Transactions start from one database

 Called the local database (i.e. local server)

 There is no way to address a remote object directly

 Some fields may come from remote views

 Possibly updatable via REST over HTTP1.1 (safe)

 At most one remote update can be allowed

 When the local commit is called

 Local database locked, validation performed

 The single remote update is done via HTTP1.1

 And then the local commit can complete/unlock

 Next: Object-Orientation
30

31

Conclusions

 This research provides new DBMS tools

Serialized transactions, RESTViews etc

 In PyrrhoDB v7.01 currently alpha

Big Live Data implementation

Providing better real-time owned behavior

Optimized for aggregations of remote

views

Versioned API for transaction-safe apps

Schema verification (incl RESTView soon)

 Next: Links

32

Links
Crowe, M. K., Matalonga, S.: Shareable Data
Structures, on
https://github.com/MalcolmCrowe/ShareableDataS
tructures

 includes source code for StrongDBMS, PyrrhoV7alpha
and documentation

Crowe, M. K., Laux, F.: Implementing True Serializable
Transactions, Tutorial, DBKDA 2021

 https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s

 https://www.iaria.org/conferences2021/filesDBKDA21/

 Version 6.3: https://pyrrhodb.uws.ac.uk

 50 clerks demo: https://youtu.be/0YaU59LvgLs

 Pyrrho blog: https://pyrrhodb.blogspot.com

 Next: References
32

https://github.com/MalcolmCrowe/ShareableDataStructures
https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s
https://www.iaria.org/conferences2021/filesDBKDA21/
https://pyrrhodb.uws.ac.uk/
https://youtu.be/0YaU59LvgLs
https://pyrrhodb.blogspot.com/

33

References
Crowe, M. K., Laux, F.: Reconsidering Optimistic Algorithms for

Relational DBMS, DBKDA 2020

Crowe, M. K., Matalonga, S., Laiho, M: StrongDBMS, built from

immutable components, DBKDA 2019

Crowe, M. K., Fyffe, C: Benchmarking StrongDBMS, Keynote

speech, DBKDA 2019

Crowe, M. K., Laux, F.: DBMS Support for Big Live Data, DBKDA

2018

Crowe, M.K., Begg, C.E., Laux, F., Laiho, M: Data Validation for Big

Live Data, DBKDA 2017

Krijnen, T., Meertens, G. L. T.: “Making B-Trees work for B”.

Amsterdam : Stichting Mathematisch Centrum, 1982, Technical
Report IW 219/83

33

https://www.iaria.org/conferences2019/filesDBKDA19/MalcolmCrowe_CallumFyffee_Keynote_BenchmarkingStrongDBMS.pdf
https://www.iaria.org/conferences2018/filesDBKDA18/MalcolmCrowe_DBMS_Support.pdf

