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Objective
● Establish a Mixed-Integer Nonlinear Programming (MINLP) formulation for the 

massive Multiple-Input Multiple-Output (MIMO) joint:
■ Transmit power assignment 
■ Pilot assignment 
■ user association 

○ Using a combination of:
■ Convex relaxation
■ Deep reinforcement learning

● Maximize spectral efficiency for ground users using deep reinforcement learning
● Perform a comparison to a convex relaxed global solution
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Why It Is Important?
● There is an ever increasing demand for faster wireless communication 

networks with higher spectral efficiency:

○ Ultra Reliable communication
○ Internet of Things
○ Intelligent Transportation
○ Natural Disasters

● Unmanned Aerial Vehicles (UAVs) is a new alternative approach to provide 

ground connectivity to multiple users in an area:

○ Low cost

○ Mobile
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Why It Is Important?
● Reinforcement learning:

○ Adaptable

■ Can achieve good results when the configuration on the 

environment changes

○ Bias Resistant

■ Learns from environment instead of labeled data
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Introduction
● Order of Introduction:

○ MINLP (Mixed-Integer Nonlinear Program)
○ Massive MIMO (Multiple Input Multiple Output)
○ Reinforcement Learning
○ Deep Reinforcement Learning

■ Deep Q-Learning
○ Limitations of the Literature Review
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MINLP (Mixed-Integer Nonlinear Program)
● Optimization Variables: 

○ Association matrix
○ Pilot assignment matrix
○ Power control matrix
○ UAV location matrix

● Constraints: 
○ Connectivity
○ Power control
○ Pilot assignment 
○ Flight control

● Performance: Sum Spectral 
Efficiency (bits/s/Hz)

[1] Guan et al. 
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Massive MIMO
● Uses beamforming with spatial multiplexing to send signals to specific users

● Increases the number of antennas while keeping the power the same:

○ Narrower Beam

○ Main lobe focuses on the user

○ Lower leakage in directions away from the user

○ 10log
10

(M) dB larger array gain at the user

8



MiamiOH.edu/cec MiamiOHcec

Massive MIMO
● Network Throughput Formula [bit/s/km2]:
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Massive MIMO
● Network Throughput Formula [bit/s/km2]:

● Main Characteristics

○ Significantly more antennas than users

○ High spectral efficiency

○ Directive signals
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Massive MIMO
● Massive MIMO mostly operates using Time Division Duplex (TDD)

● Ground users send out pilot signals to base stations

● A base station estimates a channel based on a pilot signal
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Massive MIMO with UAVs
● Given a 2 GHz frequency band, a 100 dual-polarized antenna array only 

requires 0.75 x 0.75 meters of space.

● Industry:
○ Ericson recently launched the AIR 3268

■ 12 kg
■ 128 radiating elements (32 T/R branches)
■ 23 liters
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Limitations in Literature Review

● [1] applied massive MIMO to aerial base stations but they applied a pricing algorithm 
that achieves 90% of their global optimum

● [2] used a search and sweep algorithm to locate many user clusters
● [3] focused only on the 3D location of UAVs to maximize spectral efficiency
● [4] and [5] focused mostly on the drone-to-base station backhaul connection
● [6] used a Resiliency Aware Deployment (RAD) algorithm to improve the network during 

transition mode
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Limitations in Literature Review
● Reinforcement Learning

○ [7] found the best way to allocate resources in a distributed environment when the 
channel state information is not known

○ [8] used reinforcement learning to control transmit powers to mitigate interference
○ [17] uses reinforcement learning to analyze radio frequency channels to learn from past 

occupancy and conditions of the channels. 

● Gaps

○ While controlling user transmit powers, pilot assignments and UAV positions has been 
done using convex relaxation, it only achieves 90% of their optimum solution

○ Other reinforcement learning algorithms for UAV base stations did not use massive MIMO 
which led them to experience low spectral efficiencies
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Q-Learning: Q-Value
● In Q-Learning, an agent updates its q-value when it takes an action in the environment
● Updated in q-table where

○ Columns are states
○ Rows are actions

● Equation for updating q-value

● Deep Q-Learning is different because it has a neural network instead of a q-table
● Neural Network gets updated based on the output of the neural network
● Updates q-values with backpropagation
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Q-Learning: Parameters
● Number of States Determined by:

○ Number of users
○ Number of pilot sequences available
○ Number of power levels available
○ Size of the grid

● Number of Actions Determined by:
○ 4 movement directions of the agent
○ Number of users
○ Number of pilot sequences available
○ Number of power levels available
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Q-Learning: Relaxation
● UAVs can assign multiple pilot sequences to users
● Problem broken down into two sub problems:
1. Users are connected to the UAV that has the highest Single-Input Single-Output (SISO) 

Signal to Noise Ratio (SNR)
2. Deep Q-Learning controls the UAV movement and power allocation for each pilot 

sequence
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Q-Learning: Reward
● Based on the sum spectral efficiency of users that the UAV has a connection with
● Spectral efficiency is calculated by dividing the capacity by the bandwidth B

● The SINR equation is calculated using a relaxed version of original SINR equation

18
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Q-Learning: Reward
● Lastly, the reward is multiplied by the ratio of the power chosen over the max possible 

power

● Ensures the agent finds only one pilot sequence per user that maximizes the capacity
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Q-Learning: Epsilon Greedy Strategy
● Epsilon starts off close to one and then decays nonlinearly
● Exploration vs Exploitation:

○ Random number generated
■ Higher than epsilon, agent explores environment
■ Lower than epsilon, agent exploited environment
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Calculation of epsilon
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Deep Q Learning: Neural Network
● Input layer:

○ Dimension: Number of states 
(Also tested having the input be the x and y position of the UAVs plus the 
connection information to each user to reduce input dimension size)

● 2 fully connected hidden layers 
○ Dimensions:

■ 200 
■ 200

● Output layer
○ Dimension: Number of Actions

● Updates network using the Adam optimizer
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Deep Q-learning: Policy and Target Network

22

● Loss is calculated by taking the Mean Square Error (MSE) between the the q-values 
calculated in the policy network and the optimal q-values calculated in the target 
network

● To help avoid instability, the target network is only updated periodically
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Deep Q- Learning: Parameters

● Experience Replay: Includes state of environment, action taken, reward given, and next 
state

● Replay Memory: Array that stores up to N number of experience replays and gets 
sampled randomly during training

● Batch Size: Number of randomly sampled experience replays from replay memory used 
for training

● Target Update: Number of episodes before the target network gets updated
● Memory Size: Variable that controls size of replay memory
● Learning Rate: How fast the neural network learns
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Assumptions

● Users can only be connected to one UAV
● UAVs can be connected to any number of users
● UAVs can take one action at each time step

○ Move up, down, left, right
○ Change a power level for a pilot for one of the users

● All UAVs operate in a 500m x 500m grid divided into equally sized blocks
● UAVs height is a constant 100m above the ground
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Assumptions
● Noise power is 10-8 mW
● Path loss factor is set to 2
● Signal to Interference Plus Noise Ratio (SINR) for ground user g takes into 

account 
○ Channel estimation error
○ Type of linear spatial multiplexing/demultiplexing
○ Power control
○ Noncoherent intercell interference
○ Coherent intercell interference due to pilot contamination
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Demonstration

UAV 1 UAV 2

User 
1

Power 1: 0
Power 2: 0

User 
2

Power 1: 0
Power 2: 0

1

2

1

2

26

● Power 1 is the power assigned 
and pilot sequence 1

● Power 2 is the power assigned 
to pilot sequence 2
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Demonstration

UAV 1 UAV2

User 
1

Power 1: 0
Power 2: 2

User 
2

Power 1: 0
Power 2: 0

1

21

2
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● UAV 1 sets Power 2 for 
user 1 to 2

● UAV 2 moves up
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Demonstration

UAV 1 UAV 2

User 1 Power 1: 0
Power 2: 0

User 2 Power 1: 0
Power 2: 1

1

21

2
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UAV 2 is now closer to user 1
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Performance Results Formulation
● First term is a constant
● Equivalent to minimizing the sum negative logs of the distance between the users and 

UAVs

● Approximated by calculating a 20000 x 20000 grid of all possible x and y positions of 
the UAVs

● Spacing between grid blocks is 25 mm
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Performance Results Formulation
● Assume:

○ All inferences can be ignored
○ SINR of each user is significantly greater than 1

● Problem then becomes maximizing sum capacity of users based on 
UAVs location
○ Ignore user association
○ Ignore pilot assignment
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Performance Results Formulation
● Relation between capacity and SINR
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List of Variables Table
Variable Sim 1

Batch Size 50

Gamma 0.99

Starting Epsilon 0.9

Ending Epsilon 0.001

Epsilon Decay 5*10-7

Variable Sim 1

Target Update 20

Memory Size 200

Learning Rate 0.001

Number of Episodes 10000

Max Steps Per Episode 4000
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Results

Episode
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Results

● Average was able to come within 95% the optimum cumulative reward
● With a max step size of 2000, the agents were able to converge at around the 20000 

episode
● Agents were able to select a unique pilot sequence for the users even though there is 

no preference for which user gets what pilot sequence
○ Ex: 

■ Pilot 1 for user 1 and pilot 2 for user 2, or
■ Pilot 2 for user 1 and pilot 1 for user 1
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Discussion and Future Work
● UAVs were able to get within 95% of the optimum value
● Since spacing between grid blocks is small, difference between global optimum found 

and true global optimum is small
○ Note: Global optimum cannot be used as the general solution because it assumes 

the UAVs know the users’ locations, which is not the case

● Future Work:
○ Increase number of UAVs
○ Increase number of users
○ Train agents in multiple environments to reduce the possibility of overfitting
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