
Autoencoder vs. Regression Neural Networks for
Detecting Manipulated Wine Ratings

Michaela Baumann
BI/Analytics Competence Center
NÜRNBERGER Versicherung

Nürnberg, Germany
michaela.baumann@nuernberger.de

Michael Heinrich Baumann
Department of Mathematics

University of Bayreuth
Bayreuth, Germany

michael.baumann@uni-bayreuth.de

The 17th International Multi-Conference on Computing in the
Global Information Technology, ICCGI 2022, Venice, Italy

michaela.baumann@nuernberger.de
michael.baumann@uni-bayreuth.de


Presenter Resume

Michaela Baumann studied mathematics, statistics resp. economics
at LMU Munich (Bachelor’s degree) and at University of Bayreuth
(Master’s degree) and received a doctoral degree (Dr. rer. nat.) in
computer science at University of Bayreuth, Germany.

Currently, she is working as a Data Scientist/AI Specialist at a
German insurance company. She is interested in the application of
AI and machine learning in the insurance industry, especially fraud
detection, and is also a member of several economics-related
research groups.

The opinions expressed here are her own and not necessarily those
of her employer.



Research Question

▶ We analyze the ability of different detection methods to
identify manipulated wine ratings

▶ We consider regression models and autoencoders

▶ The detection ability is measured through true/false positive
rates

▶ The hyperparameters for the neural network based models are
tuned via sequential accumulative selection



Overview

▶ Introduction

▶ Related Work

▶ The Data

▶ Methodology

▶ Results

▶ Future Work



Introduction

▶ There are prestigious rating authorities concerning wines,
hotels, or restaurants, such as Gambero Rosso’s Vini d’Italia,
Robert Parker’s The Wine Advocate, Gault&Millau, or Guide
Michelin

→ Publicly approved
→ Check for genuineness is possible

▶ By far, not all wines are represented and rated by the above or
related authorities; countless other ratings exist

→ Verification of authenticity is difficult
→ Objectivity can be dubious (ratings may even be paid for)



Related Work
Analytics of Wine Quality

▶ P. Cortez et al., Modeling wine preferences by data mining
from physicochemical properties (2009), Using data mining
for wine quality assessment (2009)
Wine preferences are predicted with several data mining
approaches using measurable wine features

▶ Y. Gupta, Selection of important features and predicting wine
quality using machine learning techniques (2018)
The most relevant features for machine learning models
predicting wine quality are selected

▶ À. Nebot et al. Modeling wine preferences from
physicochemical properties using fuzzy techniques (2015)
Fuzzy inductive reasoning is used for classifying wine
preferences

▶ S. Kumar et al. A deep neural network approach to predict
the wine taste preferences (2020)
Deep neural networks are applied for classifying wine ratings



Related Work
Anomaly Detection and Fraud Identification

▶ V. Chandola et al., Anomaly Detection: A Survey (2009)
“Anomaly detection refers to the problem of finding patterns
in data that do not conform to expected behavior.”

▶ V. Hodge and J. Austin, A Survey of Outlier Detection
Methodologies (2004)
Detection approaches usually fall into one of these categories

→ Unsupervised methods, e.g., clustering
→ Supervised methods, e.g., classification
→ Semi-supervised methods, e.g., autoencoders

▶ M. H. Bhuyan et al., Network Anomaly Detection: Methods,
Systems and Tools (2014)
Apart from tabular data, there are also methods working on
highly connected data represented through graphs



The Data

▶ Our approach is applicable to various working areas; we use
wine data as an example

→ Good data availability
→ Data innocuousness
→ Metric, clearly defined and exactly measurable explaining

variables
→ Unique target feature

▶ “Wine Quality Datasets” containing vinho verde wines from
Universidade do Minho (by P. Cortez et al.)

→ 1,599 entries (red wines) and 4,898 entries (white wines), in
total 6,497 entries

→ 13 columns, among them “quality,” the target feature, and a
categorical feature for the wine type (red/white)

→ rating (“quality”): from 0 (“very bad”) to 10 (“excellent”)



Methodology
General Approach

▶ We train several network based models on correctly labeled
data

▶ We make predictions on unseen data, where a certain part is
manipulated (feature “quality” is not correct)

▶ We compare the predicted quality with the provided quality

▶ Hypothesis: Data objects where the predicted value differs
strongly from the provided one are more likely to be
manipulated

▶ To prevent overfitting we apply bootstrapping



Methodology
Boostrapping and Data Splitting

▶ Bootstrapping is, in our case, a
Monte-Carlo-like approach of repeatedly
and independently data splitting and
model training (100 runs)

▶ Data splitting:

→ Train-test-split: 70:30
→ Dev-val-split (of the training data,

needed for hyperparameter
optimization): 70:30

▶ To allow for reproducibility, we initially
draw a vector of seeds, one seed for each
bootstrap run

train

test

dev

val



Methodology
Data Manipulation

▶ We manipulate the 5% worst
ranked test data

→ test → manip
→ Manipulation: Averaging between

the original rating and the
highest possible (10)

▶ The manipulated data objects are
flagged for the later evaluation

test manip



Methodology
Data Normalization

▶ The independent features are normalized by min-max-scaling

→ For the regression models, the target “quality” is not
normalized (dependent variable)

→ For the autoencoder models, there is no target and “quality” is
normalized like all the other features

→ To obtain comparable results, the performance of the
regression models is normalized afterwards

▶ The train set serves as reference for normalization



Methodology
Models

▶ We consider two simple models as benchmark

→ Linear regression (LM)
→ Flat autoencoder (neural network with one hidden layer and

linear activation) (BA)

▶ With the simple models we set benchmarks for the general
performance measured for all four models on the test data

▶ We also consider two (deep) neural network models

→ Regression neural network (RNN)
→ Deep autoencoder (mimicking two nested regressions) (NNA)

▶ With the deep models, we measure the detection performance
on the manipulated test data



Methodology
Hyperparameter Tuning

▶ For every bootstrap run, the deep models are trained with
hyperparameter optimization over two respective grids

▶ The grids are obtained through sequential accumulative
selection

→ We start with an initial, quite large set of possible
hyperparameters and initial guesses for plausible parameter
values

→ We fix all parameters to the initial guesses except the already
processed ones and the one under tuning

→ We perform 50 model training runs on the dev set over all
constellations and consider those parameters further on, that
were picked at least once after evaluation on val

→ We iterate over all hyperparameters until a final (smaller) set
for the actual hyperparameter optimization is found



Methodology
Hyperparameter Tuning – Illustrative Example

under tuning initial guess/fixed not considered

par1

par2

par3

par4

3 constellations

par1

par2

par3

par4

4 constellations

par1

par2

par3

par4

6 constellations

par1

par2

par3

par4

16 constellations

final parameter set

par1

par2

par3

par4

12 constellations

Here, we need to consider 41 hyperparameter constellations
in total (29 for the sequential accumulative selection and 12 for
the final hyperparameter optimization) instead of 72 when trying
all possible combinations from the initial set



Methodology
Detection Performance

▶ RNN: We calculate the squared difference of the predicted
quality and the given (possibly manipulated) quality for each
data object

▶ NNA: We compute the sum over all features of the squared
differences between the predicted and the given (possibly
manipulated) features for each data object

▶ Separately for RNN and NNA

→ We sort the data in descending order according to the
deviations

→ For qi , i = 1, . . . , 99, we mark the first qi% of the data objects
as suspicious

→ We compute the true positive rate (tpr = TP/(TP + FN))
and false positive rate (fpr = FP/(FP + TN)) for all qi

→ To summarize the results of all bootstrap runs, we calculate
the quartiles of tpr and fpr for every qi



Methodology
Detection Performance – Illustrative Example

wine diff. manip.
wine1 0.99 1
wine23 0.95 0
wine456 0.92 1
wine57 0.90 0
wine3454 0.89 1
wine345 0.86 0
wine99 0.81 0
...

...
...

wine diff. manip.
wine1 0.99 1
wine23 0.95 0
wine456 0.92 1
wine57 0.90 0
wine3454 0.89 1
wine345 0.86 0
wine99 0.81 0
...

...
...

▶ Assume we have 10 manipulated wines

▶ q1 (first three rows): tpr = 2/10 = 20%

▶ q2 (first six rows): tpr = 3/10 = 30%

▶ . . .



Results
Detection Performance

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
q [%]

tp
r 

[%
] (

qu
ar

til
es

)

model

NNA

RNN

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
q [%]

fp
r 

[%
] (

qu
ar

til
es

)

model

NNA

RNN

▶ NNA outperforms RNN in most of the cases

▶ Often, RNN is worse than randomly guessing

▶ Runtime of RNN was ca. 2h14’06” and thus much larger than
those of NNA (ca. 15’40.8”)



Results
General Prediction Performance (truncated)

0.05

0.10

0.15

0.20

NNA BA RNN LM
model

pe
rf

or
m

an
ce

 [M
A

E
] (

tr
un

ca
te

d 
at

 0
.2

)

▶ NNA is best (in median)

▶ Autoencoders are better than regressions. Even the simple BA
performs well (best compromise?)

▶ RNN is better (in median) than LM, but has a large
interquartile distance

▶ LM is most stable model



Future Work

▶ Test the approach on other manipulation strategies

▶ Identify faked ratings when there are multiple ratings per
product

▶ Apply other models, e.g., SVMs, and compare the results

▶ Consider other hyperparameter optimization approaches

▶ Explain the results with XAI methods



Thank you for your attention!

If you have any comments or questions,
don’t hesitate to contact me


