An Evacuation Support System Based on Cooperative UAVs

Nippon Institute of Technology

Yasushi Kambayashi (Mail: yasushi@.nit.ac.jp)

日本工業大学

1 Introduction

Natural disasters are ubiquitous, not limited in Japan

➤ 2011.3.11 : Great East Japan Earthquake (M9.0)

➤ 2019.10 : Reiwa 1st Eastern typhoon (Typhoon #19)
*Disaster Relief Act is most widely applied. ;

- ➤ 2021.2.10 : Royalty Islands Earthquake (M7.7)
 - * Tsunami is observed at Vanuatu

1 Introduction

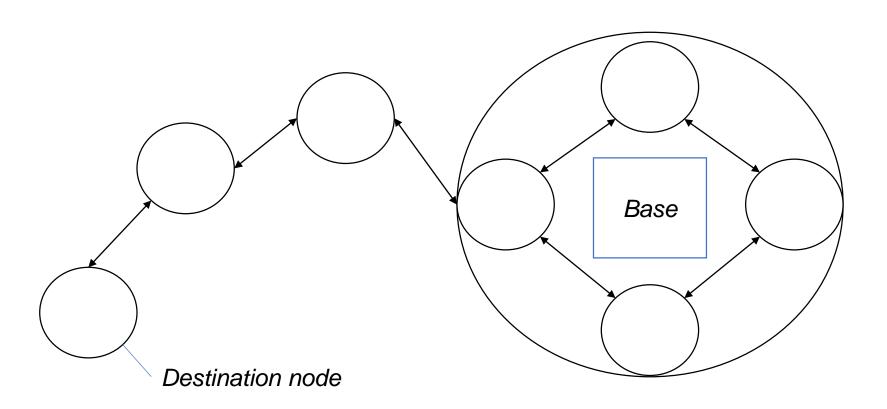
We have to consider:

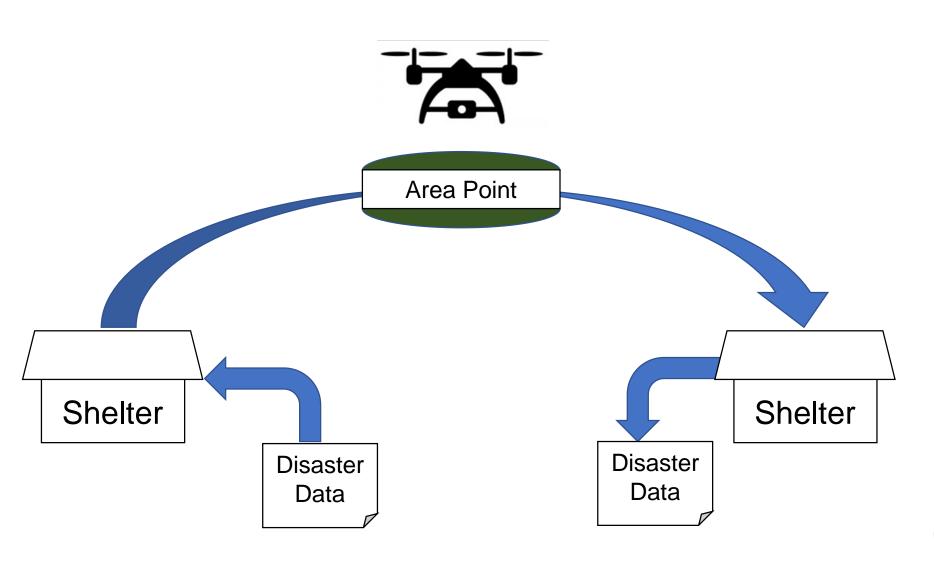
Secondary Disaster

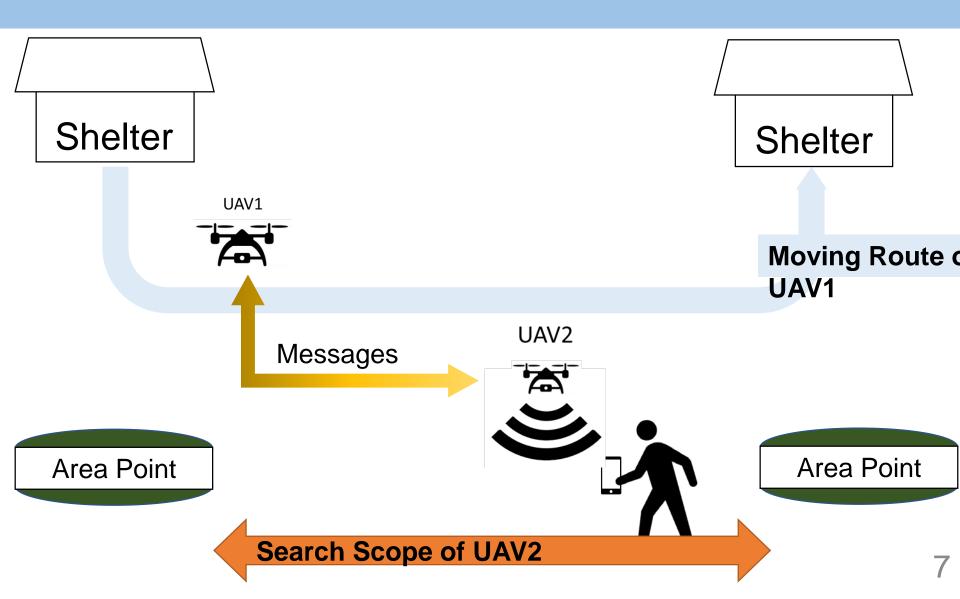
Have to be careful when evacuation.

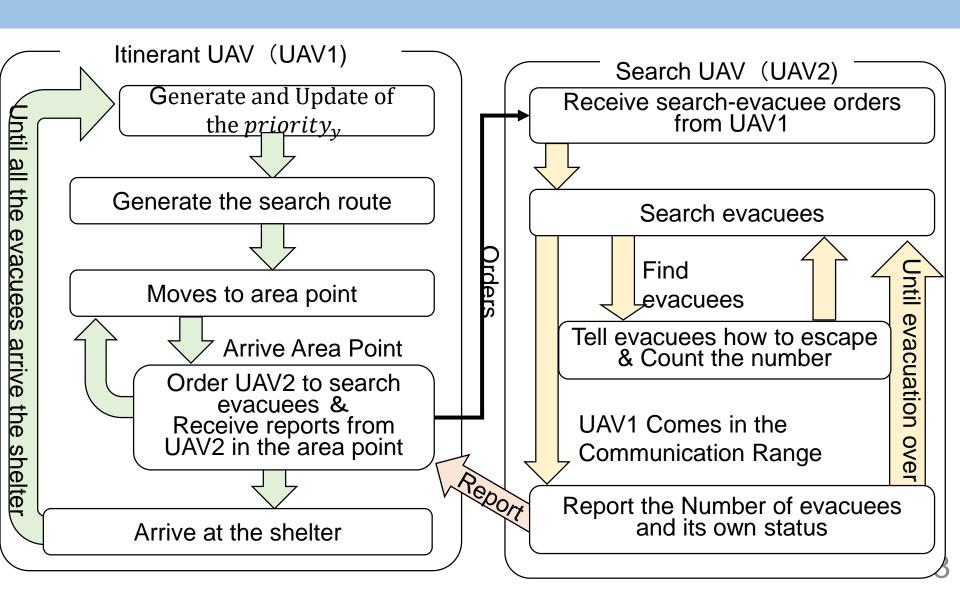
<u>Characteristics in Mountainous</u> Area

(Older population, Populality of smartphone)

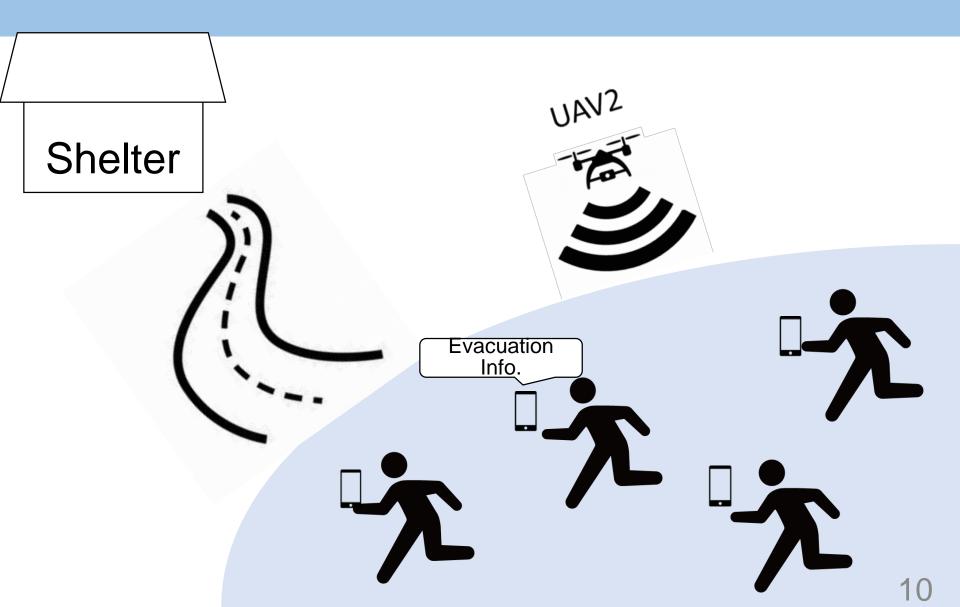


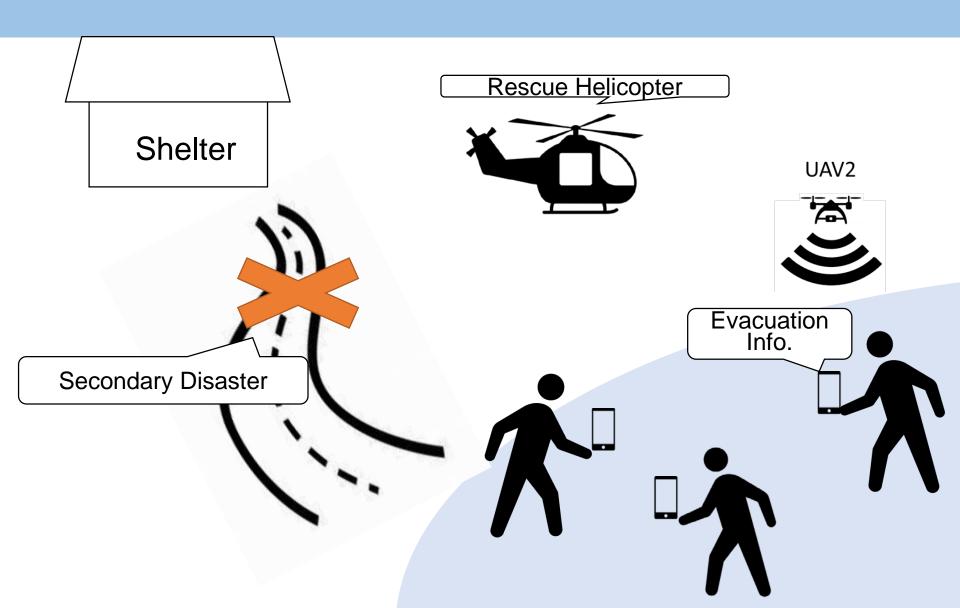

In this study


 We propose an approach for evacuation using priorities in mountainous


Simulated how many people we can rescue

DTN(Delay Tolerant Networking)





Agents

- Calculate agent: on server, calculates priorities.
- Messenger agent: on UAV1, sends message to UAV2
- Find evacuee agent: on UAV2, sends environment information to UAV1
- Find route agent: on server, determine evacuation routes.
- UAV control agent: on UAV1, fly over the evacuation routes.

• $priority_y$:

Priority for Mountainous Area

Used for the movinf route for UAV1

$$priority_y = \alpha d + \beta t + \gamma U + \delta D$$

α	$=8.1 \times 10^{-4}$							
β	=0.001	arbitrary coefficients (based on preliminary experiments)						
γ	=0.99							
δ	=0.1							
d	Distance between the area point (AP) and the nearest shelter							
t	Average time to reach to the nearest shelter							
U	Ration of evacuees per max population of the AP (0.00~1.00)							
\overline{D}	Risk of secondary disasters around the AP (0.01~1.00)							

3 Experiments

 Location : Focus on mountainous area such as An-naka, Gunnma

* Ratio of older people (2015)

National average 26.6%

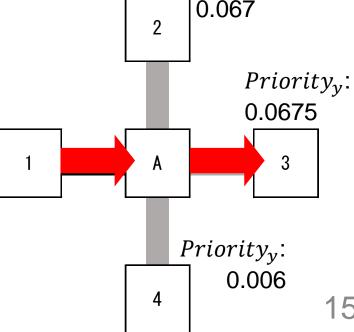
Minato-ku, Tokyo 17.1%

Miyashiro, Saitama 30.1%

An-naka, Gunnma 32.5%

3 Experiments

Google Map: Matsuida-machi, An-naka, Gunnma, Japan Based on the Hazard Map An-naka (2014)


3 Experiments

<determine the route of UAV1>

Obtain the priority of the candidates of next communication point.

* omit the previously visited points.

	発生時 (Step.1)	Step.2	Step.3	Step.4	Step.5	Step.6	Step.7	最終状態 (Step.8)	避難者数	
S1	25	25	25	25	25	25	25	25	25	
1	15	15	7	7	7	3	3	1	14	
2	30	30	15	15	15	7	7	3	27	
3	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	
5	25	25	12	12	6	3	1	0	25	
6	30	30	7	7	3	1	0	0	30	
7	0	0	0	0	0	0	0	0	0	
8	10	10	10	10	10	10	10	10	0	
9	25	25	25	25	25	25	25	25	0	
10	5	5	5	5	5	5	5	5	0	
11	40	40	20	20	10	5	2	1	39	
12	35	17	17	8	4	4	2	2	33	
13	0	0	0	0	0	0	0	0	0	
14	0	0	0	0	0	0	0	0	0	
15	О	0	0	0	0	0	0	0	0	
16	12	6	6	3	1	1	0	0	12	
17	20	10	10	5	2	2	1	1	19	
18	25	12	6	3	1	1	0	0	25	
19	32	16	8	4	2	2	2	1	31	
20	45	22	22	11	5	5	2	2	43	
S2	25	25	25	25	25	25	25	25	25	
* 1	349	263	170	135	96	74	60	51		
*2	50	136	229	264	303	325	339	348		
*1: エリアポイント周辺にいる, 避難所にたどり着いてない人数 *2: 避難所に向かえた人数+避難所にいる人数(S1, S2)										

3 Experiments/Results

- <initial state>
- Population:399人
- Already in the shelters:50人
- <final state>
- Saved population: 348人(87.2%)
- Unsaved population:51人(12.8%)
- Area points not visited: 3

4 Discussion

- Priorities of the sediment disaster caution areas and other areas are almost the same
 - → Need to adjust the priorities of risky areas.
- Save 80%, but could not save 20%
 - → Need to increase the number of UAV1s, and
 - → Need to adjust the search routes.

4 Discussion

Need to consider the priorities of "sediment disaster caution areas" and "densely populated areas" exists at the same time

Reconsider the formula of priority so that "<u>sediment</u> disaster caution areas" have higher priorities.

So that we can manage any situations.

5 Future Work (1)

- The simulator has only one UAV1
 - → Situations of disasters and evacuees are not in real time.
 - → Need to deal with unexpected situations.

⇒ Sophisticated simulation with multiple UAVs

5 Future Work (2)

- Shortest route finding algorithms such as Dijkstra method or Ford-Fulkerson method are not used.
 - Because mountainous areas have few routes anyway.
 - → about 20% population, we could not save.

⇒Route finding algorithms are useful?

Bibliography 1

- 1. S. Taga, M. Takimoto, and Y. Kambayashi, "Multi-Agent Approach for Evacuation Support System," Proc. 9th International Conf. on Agents and Artificial Intelligence, vol.2, pp.220–227, 2017.
- 2. Y. Kambayashi, K. Konishi, R. Sato, K. Azechi, and M. Takimoto, "A Prototype of Evacuation Support Systems Based on the Ant Colony Optimization Algorithm," Proc. 29th International Conf. on Information Systems Architecture and Technology, pp.324–333, 2018.
- 3. I. Tago, N. Suzuki, T. Matsuzawa, M. Takimoto, and Y. Kambayashi, "A Proposal of Evacuation Support System with Redundancy Using Multiple Mobile Agents," Proc. 13th KES International Conf. on Agents and Multi-agent Systems: Technologies and Applications, SIST 148, Springer, pp.47–56, 2019.
- 4. I. Tago, K. Konishi, M. Takimoto, and Y. Kambayashi, "Providing Efficient Redundancy to an Evacuation Support System Using Remote Procedure Calls," Proc. 14th KES International Conf. on Agents and Multiagent Systems: Technologies and Applications, SIST 186, Springer, pp.47–56, 2020.
- 5. Y. Kambayashi, T. Nishiyama, T. Matsuzawa, and M. Takimoto, "An implementation of an Ad Hoc mobile multiagent system for a safety information," Proc. 36th International Conf. on Information Systems Architecture and Technology, AISC 430, Springer, pp.201–213, 2015.
- 6. S. Taga, T. Matsuzawa, M. Takimoto, and Y. Kambayashi, "Multi-Agent Base Evacuation Support System Using MANET," Vietnam J. Comp. Sci., **6**(2), 177–191, 2019.
- 7. S. Taga, T. Matsuzawa, M. Takimoto, and Y. Kambayashi, "Multi-Agent Approach for Return Route Support System Simulation," Proc. 8th International Conf. on Agents and Artificial Intelligence, vol.1, pp.269–274, 2016.
- 8. H. Goto, A. Ohta, T. Matsuzawa, M. Takimono, Y. Kambayashi, and M. Takeda, "A Guidance System for Widearea Complex Disaster Evacuation based on Ant Colony Optimization," Proc. 8th International Conf. on Agents and Artificial Intelligence, vol.1, pp.262–268, 2016.

Bibliography 2

- 9. O. Asuka, H. Goto, T. Matsuzawa, M. Takimoto, Y. Kambayashi and M. Takeda, "An Improved Evacuation Guidance System Based on Ant Colony Optimization," Proc. 19th Asia Pacific Symposium on Intelligent and Evolutionary Systems, PALO 5, Springer, pp.15-27, 2015.
- 10. S. Taga, T. Matsuzawa, M. Takimoto, and Y. Kambayashi, "Multi-Agent Base Evacuation Support System Considering Altitude," Proc. 11th International Conference on Agents and Artificial Intelligence, vol.1, pp.299-306, 2019.
- 11. S. Taga, T. Matsuzawa, M. Takimoto and Y. Kambayashi, "Multi-Agent Base Evacuation Support System Using MANET," Proc. 10th International Conf. on Computational Collective Intelligence, Part.1, LNAI 11055, Springer, pp.445-454, 2018.
- 12. 総務省統計局, "National Census". [Online] Available: https://www.e-stat.go.jp/stat-search/files?page=1&layou t=datalist&toukei=00200521&tstat=000001049104&cycle=0&tclass1=000001049105&stat_infid=0000315943 11&tclass2val=0, Accessed 9 Feb 2021.
- 13. Annaka City, "Annaka City Disaster Prevention Guidebook". [Online] Available: https://www.city.annaka.lg.jp/s aigai_byouki_kinkyuji/2014-0602-1001-27.html, Accessed 8 Feb 2021.
- 14. Annaka City, "Designated evacuation sites list". [Online] Available: https://www.city.annaka.lg.jp/saigai_byouki _kinkyuji/jv.html, Accessed 8 Feb 2021.

Thank you for very much.