Digital Identity

Identity, Security, and Data Provenance

IARIA Annual Congress 2022
Frontiers in Science, Technology, Services, and Applications
Nice, France, July 22-28, 2022
(https://www.iaria.org/conferences2022/IARIACongress22.html)

Stan McClellan, PhD
Texas State University, San Marcos TX, USA
Abstract

• Digital Identity is an abiding problem

• Data-Centric Protection:
 - Can augment conventional AAA
 - Can provide context-sensitive policy
 - Is compatible with Zero-Trust Architectures
 - Can provide Digital Identity
Stan McClellan

Professional Experience
- Co-Director, Connected Infrastructure Initiative (CIEDAR), Texas State University
- Professor, Ingram School of Engineering, Texas State University (2008 – Present)
- Director, Ingram School of Engineering, Texas State University (2013 – 2018)
- CTO & co-Founder, Power Tagging Technologies (2008-2010)

Publications & Activities
- Smart Cities in Application: Healthcare, Policy, and Innovation. Springer. 2019
Basic Agenda

• Background
 – Classical AAA
 – Contemporary Approaches

• Problems
 – High Profile
 – Constant Failure

• (re)Definition
 – Phases & Principles
 – Use Cases & Comparison

• Possible Outcome
 – Protected Data
 – Zero-Trust Architecture
Classical Authentication

- **What I know**
 - Password, Challenge/Response, etc.
- **What I have**
 - Access Card, USB Dongle, etc.
- **What I am**
 - Fingerprint, Retina Scan, etc.
Classical AAA

- **Authentication**
 - Are you who you say you are?
 - Exercises “Know / Have / Am” of classical authentication

- **Authorization**
 - Should you have access to this data?
 - Typically via access control lists (ACL) and user databases

- **Accounting**
 - Access for how long, and in what fashion?
 - Most often used for billing purposes and audit trails
Approaches: Technologies

- **Network-based**
 - TACACS/+
 - RADIUS (RFC-2865 et.al.)
 - DIAMETER (RFC-6733, et.al.)

- **Person-based**
 - Self-Sovereign Identity (SSI)
 - Decentralized Identifiers (DID)
 - e.g. EU “ESSIF” per eIDAS

- **Application-based**
 - SSL/TLS (RFC-8446): encryption
 - OAuth2: constrained delegation of access to applications
 - UMA: user-managed access, extensions of OAuth
 - FIDO2 (WebAuthn, CTAP2.x): client-to-authenticator protocol
 - OpenID/FAPI: decentralized attestation
Approaches: Companies

Large Companies

- Okta (https://www.okta.com)
- Docusign (https://www.docusign.com/products/identify)

Small Companies

- ImageWare (https://imageware.io)
- Mitek (https://www.miteksystems.com)
- Vouched (https://www.vouched.id)
- Trulioo (https://www.trulioo.com)
- iComply (https://icomplyis.com)
- InCode (https://info.incode.com)
- TeleSign (https://www.telesign.com)

There are a bunch of them ... The market is crowded and growing
By 2023, at least 80% of government services that require citizen authentication will support access through multiple digital identity providers.

By 2024, at least a third of national governments and half of U.S. states will offer citizens mobile-based identity wallets.

Only a minority will be interoperable across sectors and jurisdictions.

This is a problem
Defining a “Digital Identity”

• Bundle of identifying attributes and data
 - Discrete, secure, self-contained, extensible ("atomic")

• Authentication + Authorization
 - Uniquely identifies the entity to which it belongs

• Portable
 - Can be sent to insecure location via insecure network
Not Digital Identity

• National/Civil Identity
 - Passport, Driver License, Social Security, etc.

• Online Identity
 - Breadcrumbs, purchase history, public information, etc.

• Computer Identity
 - Usernames, passwords, encryption keys, etc.

• Encryption (!)
Digital ID vs. Encryption

<table>
<thead>
<tr>
<th>Function</th>
<th>Encryption</th>
<th>Digital ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support multiple algorithms (e.g. AES-128)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Support multiple keys per user or instance</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Partial decryption / partial disclosure</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval (dates, times)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Locations (geo, network, system)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Attempt tracking (number, lockout)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Countermeasure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notification (of owner – email, text, etc.)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Escalate (new & stricter challenges, etc.)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Self-Destruct</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
Phases of Identity (C.Allen)

- Centralized (unitary)
 - Single administrative authority
- Federated (multi-central / oligarchy)
 - Multiple administrative authorities, federated
- User-Centric (multi-central / individual)
 - Multiple administrative authorities, federated
- Self-Sovereign (non-central)
 - Individual control regardless of authorities
Ten Principles of Identity (C.Allen)

1. Exist Independently
2. User Control
3. Self-Owned Data
4. System Transparency
5. Persistence
6. Transportable
7. Widely Used
8. User Consent
9. Minimal Disclosure
10. Protection of Rights
EcoSystem is Mandatory

• Creation
 - Created and owned by the entity identified
 - More than one ID per entity (many to one)
 - Identifying data provided at creation (schema)
 - Requires secure, validated “writer” to ingest data, create bundle

• Usage
 - Network needed to share and for some countermeasures
 - May require centralized management (ala PKI?)
 - Requires secure, validated “reader” to ingest bundle, validate access
 Must be cross-sector and cross-jurisdiction, and linked to valuable use-cases
Blockchain is not Identity

• Myths
 – Use Blockchain as a database to store personally identifying information (PII)
 – Use Blockchain as a distributed hash table (DHT) for PII data that is stored off-chain

• Reality
 – Blockchain is transparent, immutable, reliable and auditable
 – It can be used in the secure exchange of cryptographic keys … e.g. PKI not PII
 – This may be a step toward decentralized public key infrastructure (PKI) which can lead to management of PII
High Profile, High Cost

• April 2021
 - UN Data Breach
 • Fraudulent credentials allow access to sensitive data

• January 2022
 - Okta Identity Management compromised by Lapsus$
 • 2.5% of customers data “may have been viewed or acted upon”
 • https://www.wired.com/story/okta-hack-customers-lapsus-breach/
 - Tesla cars compromised by German researcher
 • Bug in open source logging tool exposed cars directly to the internet
 • https://techcrunch.com/2022/01/24/teslamate-bug-teslas-exposed-remote/

• July 2022
 - MICODUS GPS Tracker compromised by Bitsight
 • Exploit tracks and remotely manipulates “at least a million vehicles”
 • https://techcrunch.com/2022/07/19/micodus-gps-tracker-exposing-vehicle-locations

• [T]raditional protections just aren’t working …
• [T]he solution is actually quite simple: Protect the data itself
Key: Zero Trust Architecture

- Everything is a resource. All resources can present a threat.
- All communication is secured, regardless of location.
- Access to a resource is on a per-person basis, with minimal privilege granted.
- Access policies are dynamic, and based on telemetry.
- All assets are monitored. No asset is inherently trusted.
- Authentication and authorization are enforced per-resource, requiring identity, credential, access, and asset management.
- Telemetry of access requests and asset state is used for continual improvement

(per NIST SP 800-207)
Use Case: Supply Chain

• Problem
 - Layered security model doesn’t work
 - Boundary, Network, System, File … easily exploited

• Approach
 - *Data-Centric Protection*
 - Augments the layered enterprise security model
 - Built-in policy-based tracking and protection

• Results
 - Intelligent data self-enforces protection policies
 - Self-destruct, invoke different access procedures, call-home, honeypot, etc.
Use-Case: IT/OT Convergence

• Problem
 – Endpoints are small, remote, with limited CPU and memory
 – Battery-powered devices conserve energy by “sleeping”
 – Data may transit unknown networks from insecure locations

• Approach
 – Secure the data at the source before transmission
 – Track the data when it is received and utilized via enclosed policies

• Result
 – Independence from incompetent device manufacturers
 – Independence from insecure intervening networks and paths
 – Policy-driven visibility for all activities, states, and locations of the data itself
Intelligent Data

- Time Based
 - Unauthorized Scheduled Period
 - Unauthorized Time of Day
 - Unauthorized Day of Week
 - Unauthorized Geo Location
 - Unauthorized Network
 - Unauthorized Hardware System
 - Exceeded Allowed Access Count
 - Multiple Failed Access Attempts

- Environment Based

- Action Based

Access violations trigger self-managed mitigating actions by UXP Policy Engine

- Policy Violations
 - Text/Email Home
 - Self-Destruct (Delete)
 - Digital Shred
 - Present Honeypot
 - Escalate Multi-Factor Auth. Level
 - Deny Access

UXP

July 2022
Data-Centric Protection

• Adheres to:
 – Principles of Zero-Trust Architecture
 – Conventional AAA principles

• Is not:
 – BlockChain, but can be co-implemented
 – Encryption, but depends on it

• Provides:
 – Use-Case-Aware security
 – Context-sensitive policy

• Implements:
 – Digital Identity
Thank You!

• Useful References
 - Decentralized Identifiers (DIDs) v1.0. W3C Recommendation. July 2022. https://www.w3.org/TR/did-core/