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Introduction

* Speech and Text convey rich emotional information

* Single Modality is insufficient and incomplete to recognize human's
emotion

* VVoice and Text extracted from speech are associated

* Emotion Al Pipeline:
* Emotion Representation
* Multimdoal Emotion Model Learning
 Downstream Tasks (Emotion Detection, Emotion Recognition,
Emotion Synthetize)



Different Forms of Intelligence

a

N\

Computation
Intelligence

(high performance
computation)

~

Perception
Intelligence

(face recognition,
speech recognition)

Cognition Intelligence

(emotion recognition,
text sentiment)

J

J




Motivation

* Single Modality for Emotion Recognition suffers robustness problem. (Yin-Yang Theory)

* Big models are popular in industry, but training big models using mega multimedia
dataset consumes huge resource and prohibitively expensive (e.g., GPT-3 costs $4.6
million)

* Transfer learning provides powerful reusable techniques (VGGish, Yamnet, BERT, etc.)
e How to construct an effective multimodal emotion model

* Transformer model has acheived great success in signal speech and NLP modality tasks



Related Works
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Figure from ‘Very Deep Convolutional Networks For Large-Scale Image Recognition”

VGG-19 Network
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Feature Extraction from Speech Audio

To consider the temporal characteristic, a large speech collection is represented by

X = {xl, xz, x3, vy xN},

wherex; € F X T,F and T denote for dimensionality of spectrogram

FXT

The goal is to learn an embedding g: = r — 14, such that

g — a(x)|| <= 11gGe) — gl when [i-j| <= i—k]
We learn a triplet loss function

N
O(z) = lllg(x:) — g(z;)13 + llg(z:) — g(z)lI3 + 9]

i=1

Where § is non — negative margin hyperparameter



l fused feature z }

Text Embedding Extraction — [ —

{ attention operation Xa ] |/{ attention operaton yn J
Given a sequence of text extracted from speech ‘ R opeEEon }_"(ﬁ) |
(1) Map the tokens of the initial input sequence to an
embedding space
(2) Input the embedded sequence to the encoder layer T
(a) The encoder layer is composed of a stack of blocks _ }
attention operaton y1
(b) Each block contains self-attention followed by feed- |/{ '
forward |
(c) Residual skip from self-attention layer and feed- ‘ e }_»@ |
forward | I

(d) Dropout within the feed-forward network




Transformer Architecture: Encoder Block
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* The encoder block uses the self-attention mechanism
* Residual connections is added, and layer normalization LayerNorm( x + Sublayer(x))

* Encoder is stacked, and the output of last encoder block is the input of decoder



Transformer Architecture: Decoder Block

Encoder 6

* The decoder block uses encoder-decoder attention
 The embeddings use features from input and partial output
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Joint Emotion Representation

full connection layer J
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Joint Emotion Representation from Transformer

* Speech audio and speech contents would have some extent of correlation, and
both exert an effect on emotion recognition.

* Co-attention mechanism:
Given speech audio features X and text embedding Y,
input X and Y to a transformer network with deep co-attention
The co-attention operations are represented by

A(X:g.)
A(Y; gy)

T

Y

where attention guidance g, is derived from speech and g, from text



Joint Emotion Representation from Transformer

The detailed computations are:

H = tanh(W, X + (W, g,)VT)

a = softmaz(wi_H) (3)
T = Z a; T;

where V' 1s a vector with all elements equalling one. W, and W,  denotes for
k x d matrix parameter, and wyp, refers to k£ dimensional vector parameter. a®
1s the attention weight of speech feature X. The computations ot ¢ follows the
same process In Equation 3. At the first step of alternating co-attention, ¢, 1s



Joint Emotion Representation from Transformer

same process In Equation 3. At the first step of alternating co-attention, g, 1s
0. At the second step, g, 1s intermediate attended text embedding from the first
step. At last, we use the speech feature # as the guidance to attend the text
again. We use a linear function to tuse attended features # and 7. The ftused

feature z 1s represented by
z = LayerNorm(W' 'z + Wgﬁ} (4)

Finally, the binary cross-entropy 1s used as loss function to train a classifier.



Experimental Setup

e Common Emotion Dataset

Emotional Dyadic Motion Capture
(IEMOCAP)

SAVEE: 7 emotion categories: anger,

disgust, fear, happiness, neutral,
sadness, and surprise

Colossal Clean Crawled Corpus (C4)

GoEmotions: 58k English Reddit
comments, labeled for 27 emotion
categories or Neutral

2000 A

1750 4

1500 1

Count

Count of Emotions

surprise angry  calm  disgust  sad fear

neutral happy

Emotions
SAVEE Dataset

Emotion Number of Samples Rate
Anger 1229 12.24%
Sadness 1182 11.78%
Happiness 495 4.93%
Neutral 575 5.73%
Excited 2505 24.96%
Surprise 24 0.24%
Fear 135 1.34%
Disgust 4 0.03%
Frustration 3830 38.16%
Other 59 0.59%
Total 10,038 100%

IEMOCAP Dataset

Number of Examples

e D*&\@@S‘*é‘?@@&o“ OF & P FF S
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&
GoEmotions Dateset
Dataset # documents  # tokens size

C4.EN.NOCLEAN 1.1 billion 1.4 trillion 2.3 TB
C4.En.NoBLockLisT 395 million 198 billion 380 GB
C4.EN 365 million 156 billion 305 GB

C4 Dataset



Experimental Setup

* Pretrained models
VGGish is audio embedding
Yamnet employs Mobilenet v1 depthwise-separable convolution
Text-to-text transfer transformer (T5 model)
Bert_base_go _emotion

Distilbert-based-uncased-go-emotion

* Fine-tune models
The parameters of the final layer are updated
After training for a certain updates, the second-to-last layer are contained

Until the entire network’s parameters are fine-tuned



Experimental Results

Table 1. Comparison of multimodal fusion by learning a joint emotion representa-
tion performance with single modality through the different embeddings on different

emotion datasets.

Models IEMOCAP | SAVEE | Mean
VGGis FC1 65.3% 57.7% 61.5%
VGGish Finetuned 61.4% 59.3% | 60.4%
YAMNet layer 10 63.2% 62.3% | 62.8%
YAMNet Finetuned 67.6% 62.7% | 65.2%
TRILL distilled 70.5% 67.8% | 69.2%
TRILL Finetuned 73.8% 68.6% | T1.2%
Text-to-Text Transformer (T5) 75.7% 72.3% | 75.5%
TRILL-T5 Multimodal Fusion 81.7% 75.9% | 78.8%




Experimental Results

Table 2. Average performance of the different emotion representations on four selected

emotion categories.

Models + Dataset happy | anger sad natural | Mean
TRILL (IEMOCAP_Audio) T7.2% | 81.9% | 72.3% | 66.8% | T4.6%
TRILL (SAVEE_Audio) 73.3% | 84.3% | 73.3% | 66.7% | T4.4%
T5 (IEMOCAP Text) 79.6% | 82.7% | 72.2% | 64.9% | 74.9%
T5 (SAVEE_Text) 75.0% | 81.7% | T1.7% | 66.7% | 73.8%
Multimodal Fusion (IEMOCAP) | 83.1% | 84.6% | 76.3% | 71.1% | 78.9%
Multimodal Fusion (SAVEE) 84.7% | 85.2% | T45% | T0.3% | 78.7%




Experimental Results

Dataset happy anger sad natural
IEMOCAP&SAVEE 84.2% 86.0% 77.9% 71.8%
RAVDESS 82.2% 87.8% 77.8% 76.1%
GoEmotions 85.4% 88.5% 79.7% 65.3%

Evaluation of robustness of our multimodal emotion recognition method on different datasets



Conclusion

* Multimodal emotion recognition is highly applicable to different types of industry
* Transfer learning provides powerful reusable techniques

* Transformer with co-attention achieved good results on learning a joint emotion
representation

* Experiments show that the transformer mechanism on bimodal helps to fuse important
information and increase emotion recognition performance

* Multimodal emotion recognition still needs to make breakthrough in industry
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