

The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications IARIA Congress 2022 July 24, 2022 to July 28, 2022 - Nice, Saint-Laurent-du-Var, France

Multimodal Emotion Recognition Using Speech and Text

Clement H.C. Leung | Chinese University of Hong Kong (Shenzhen), clementleung@cuhk.edu.cn

James J. Deng | MindSense Technologies

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Clement LEUNG

FULL PROFESSORSHIPS at

- University of London, UK; National University of Singapore; Chinese University of Hong Kong, Shenzhen, China; Hong Kong Baptist University; Victoria University, Australia
- Two US patents, five books and over 150 research articles
- Program Chair, Keynote Speaker, Panel Expert of major International Conferences
- Editorial Board of ten International Journals
- Listed in Who's Who in the World and Great Minds of the 21st Century
- Fellow of the British Computer Society, Fellow of the Royal Society of Arts, Chartered Engineer

Outline

- **1. Introduction**
- 2. Related Works
- **3. Emotion Representation**
- 4. Multimodal Emotion Recognition
- 5. Experiments
- 6. Conclusion

SENTIMENT ANALYSIS

Discovering people opinions, emotions and feelings about a product or service

Introduction

- Speech and Text convey rich emotional information
- Single Modality is insufficient and incomplete to recognize human's emotion
- Voice and Text extracted from speech are associated
- Emotion Al Pipeline:
 - Emotion Representation
 - Multimdoal Emotion Model Learning
 - Downstream Tasks (Emotion Detection, Emotion Recognition,

Emotion Synthetize)

Different Forms of Intelligence

Computation Intelligence (high performance computation) Perception Intelligence

(face recognition, speech recognition)

Cognition Intelligence (emotion recognition, text sentiment)

Motivation

- **Single Modality** for Emotion Recognition suffers robustness problem. (Yin-Yang Theory)
- **Big models** are popular in industry, but training big models using mega multimedia dataset consumes huge resource and prohibitively expensive (e.g., GPT-3 costs \$4.6 million)
- **Transfer learning** provides powerful reusable techniques (VGGish, Yamnet, BERT, etc.)
- How to construct an effective **multimodal** emotion model
- Transformer model has acheived great success in signal speech and NLP modality tasks

• Emotion Theory

- Discrete Emotion (Six basic emotions, or Nine basic emotions, OCC model)
- Dimensional Emotion (Arousal-Valence, Pleasure-Arousal-Dominance, Circumplex)

Related Works

Burden, David, and Maggi Savin-Baden. Virtual humans: Today and tomorrow. Chapman and Hall/CRC, 2019.

VGG-19 Network

Figure from 'Very Deep Convolutional Networks For Large-Scale Image Recognition"

		ConvNet C	onfiguration	i terre i	
A	A-LRN	B	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
	and the second second		conv1-256	conv3-256	conv3-256
					conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096		
			4096		
			1000		
		soft	-max		

OUTPUT

fc2

fc1

1024

sep_conv12

1024

sep_conv13 GAP

Related Works

- Emotion Recognition from single modality (e.g., Speech, Text)
 - Speech Emotion Recognition (CNN, LSTM, CNN-LSTM, BERT, etc.)

sep_conv4

sep_conv5

• Text Sentiment (LSTM, BERT, universal language model fine-tuning, etc.)

128 128 sep_conv2 sep_conv3

conv1 sep_conv1

Mobilenet v1 for Yamnet: Audio Classification

512

sep_conv7 sep_conv8 sep_conv9

sep_conv6

512

512

sep_conv10 sep_conv11

Multimodal Information Modelling

- Joint Representation
- Multimodal fusion
- Co-learning
- Generative adversarial network

Feature Extraction from Speech Audio

To consider the temporal characteristic, a large speech collection is represented by

$$\mathsf{X}=\{x_1,\,x_2,\,x_3,\,...,\,x_N\},$$

where $x_i \in F \times T$, F and T denote for dimensionality of spectrogram

The goal is to learn an embedding $g := r^{F \times T} \rightarrow r^d$, such that

$$||g(x_i) - g(x_j)|| \le ||g(x_i) - g(x_k)||$$
, when $|i-j| \le |i-k|$

We learn a triplet loss function

$$\Theta(z) = \sum_{i=1}^{N} [\|g(x_i) - g(x_j)\|_2^2 + \|g(x_i) - g(x_k)\|_2^2 + \delta]$$

Where δ is non – negative margin hyperparameter

Text Embedding Extraction

Given a sequence of text extracted from speech

(1) Map the tokens of the initial input sequence to an embedding space

(2) Input the embedded sequence to the encoder layer

(a) The encoder layer is composed of a stack of blocks

(b) Each block contains self-attention followed by feedforward

- (c) Residual skip from self-attention layer and feedforward
- (d) Dropout within the feed-forward network

Transformer Architecture: Encoder Block

- The encoder block uses the self-attention mechanism
- Residual connections is added, and layer normalization LayerNorm(x + Sublayer(x))
- Encoder is stacked, and the output of last encoder block is the input of decoder

- The decoder block uses encoder-decoder attention
- The embeddings use features from input and partial output

Joint Emotion Representation

Sample speech with anger emotion

Multimodal fusion of speech audio and text on embeddings extracted from transfer learning

Joint Emotion Representation from Transformer

- Speech audio and speech contents would have some extent of correlation, and both exert an effect on emotion recognition.
- Co-attention mechanism:

Given speech audio features X and text embedding Y,

input X and Y to a transformer network with deep co-attention

The co-attention operations are represented by

 $\hat{x} = \Lambda(X; g_x)$ $\hat{y} = \Lambda(Y; g_y)$

where attention guidance g_x is derived from speech and g_y from text

Joint Emotion Representation from Transformer

The detailed computations are:

$$\begin{split} H &= tanh(W_x X + (W_{g_x} g_x) V^T) \\ \hat{a} &= softmax(w_{hx}^T H) \\ \hat{x} &= \sum a_i^x x_i \end{split} \tag{3}$$

where V is a vector with all elements equalling one. W_x and W_{g_x} denotes for $k \times d$ matrix parameter, and w_{hx} refers to k dimensional vector parameter. a^x is the attention weight of speech feature X. The computations of \hat{y} follows the same process in Equation 3. At the first step of alternating co-attention, g_x is

Joint Emotion Representation from Transformer

same process in Equation 3. At the first step of alternating co-attention, g_x is 0. At the second step, g_y is intermediate attended text embedding from the first step. At last, we use the speech feature \hat{x} as the guidance to attend the text again. We use a linear function to fuse attended features \hat{x} and \hat{y} . The fused feature z is represented by

$$z = LayerNorm(W_x^T \hat{x} + W_y^T \hat{y}) \tag{4}$$

Finally, the binary cross-entropy is used as loss function to train a classifier.

Experimental Setup

Common Emotion Dataset

Emotional Dyadic Motion Capture (IEMOCAP)

SAVEE: 7 emotion categories: anger, disgust, fear, happiness, neutral, sadness, and surprise

Colossal Clean Crawled Corpus (C4)

GoEmotions: 58k English Reddit comments, labeled for 27 emotion categories or Neutral

GoEmotions Dateset

Emotion	Number of Samples	Rate
Anger	1229	12.24%
Sadness	1182	11.78%
Happiness	495	4.93%
Neutral	575	5.73%
Excited	2505	24.96%
Surprise	24	0.24%
Fear	135	1.34%
Disgust	4	0.03%
Frustration	3830	38.16%
Other	59	0.59%
Total	10,038	100%

Dataset	# documents	# tokens	size
C4.EN.NOCLEAN	1.1 billion	1.4 trillion	2.3 TB
C4.EN.NOBLOCKLIST	395 million	198 billion	380 GE
C4.en	365 million	156 billion	305 GI
	C4 Dataset		

Experimental Setup

• Pretrained models

VGGish is audio embedding

Yamnet employs Mobilenet v1 depthwise-separable convolution

Text-to-text transfer transformer (T5 model)

Bert_base_go_emotion

Distilbert-based-uncased-go-emotion

• Fine-tune models

The parameters of the final layer are updated

After training for a certain updates, the second-to-last layer are contained

Until the entire network's parameters are fine-tuned

Experimental Results

Table 1. Comparison of multimodal fusion by learning a joint emotion representation performance with single modality through the different embeddings on different emotion datasets.

Models	IEMOCAP	SAVEE	Mean
VGGis FC1	65.3%	57.7%	61.5%
VGGish Finetuned	61.4%	59.3%	60.4%
YAMNet layer 10	63.2%	62.3%	62.8%
YAMNet Finetuned	67.6%	62.7%	65.2%
TRILL distilled	70.5%	67.8%	69.2%
TRILL Finetuned	73.8%	68.6%	71.2%
Text-to-Text Transformer (T5)	75.7%	72.3%	75.5%
TRILL-T5 Multimodal Fusion	81.7%	75.9%	78.8%

Experimental Results

Table 2. Average performance of the different emotion representations on four selected emotion categories.

Models + Dataset	happy	anger	sad	natural	Mean
TRILL (IEMOCAP_Audio)	77.2%	81.9%	72.3%	66.8%	74.6%
TRILL (SAVEE_Audio)	73.3%	84.3%	73.3%	66.7%	74.4%
T5 (IEMOCAP_Text)	79.6%	82.7%	72.2%	64.9%	74.9%
T5 (SAVEE_Text)	75.0%	81.7%	71.7%	66.7%	73.8%
Multimodal Fusion (IEMOCAP)	83.1%	84.6%	76.3%	71.1%	78.9%
Multimodal Fusion (SAVEE)	84.7%	85.2%	74.5%	70.3%	78.7%

Experimental Results

Dataset	happy	anger	sad	natural
IEMOCAP&SAVEE	84.2%	86.0%	77.9%	71.8%
RAVDESS	82.2%	87.8%	77.8%	76.1%
GoEmotions	85.4%	88.5%	79.7%	65.3%

Evaluation of robustness of our multimodal emotion recognition method on different datasets

Conclusion

- Multimodal emotion recognition is highly applicable to different types of industry
- Transfer learning provides powerful reusable techniques
- Transformer with co-attention achieved good results on learning a joint emotion representation
- Experiments show that the transformer mechanism on bimodal helps to fuse important information and increase emotion recognition performance
- Multimodal emotion recognition still needs to make breakthrough in industry

Questions

THANK YOU

WISH YOU HAVE GOOD ENNOTIONS