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This paper presents a study regarding to the sensors development and use for X-
ray spectroscopy. In fact, not only a novel discussion on sensors since the X-rays
discovery has been included but also prospective about future is presented. The X-
ray based-spectrometry is an analytical technique for determination of elemental
composition of different materials. For agricultural soils, either soft or hard X-ray
spectroscopies have been shown opportunities to improve agronomic
competitiveness and agroecosystems sustainability. This review in X-ray sensors
have considered their use in both the X-ray fluorescence and the particle induced
X-ray emission technique, i.e., highlighting new materials, accuracy, resolution,
efficiency, energy response, and related methods.



Essential nutrients for
agricultural production

Chemical Atomiclonic forms Approximate dry
Element symbol  weight Absorbed by plants concentration
Mccronutrients
Nitrogen N 14.01 NO;, NHa* 4.0%
Phosphorus P 30.98 PO,*>, HPO,?, H,PO, 0.5%
Potassium K 39.10 K* 4.0 %
Magnesium Mg 24.32 Mg?2* 0.5%
Sulfur S 32.07 SO,* 0.5%
Calcium Ca 40.08 Ca?* 1.0%
Micronutrients
Iron Fe 55.85 Fe?*, Fe3* 200 ppm
Manganese Mn 54.94 Mn?2* 200 ppm
Zinc Zn 65.38 Zn?* 30 ppm
Copper Cu 63.54 Cu,* 10 ppm
Boron B 10.82 BO,*, B,O,* 60 ppm
Molybdenum Mo 95.95 MoO,* 2 ppm
Chlorine Cl 35.46 Cl 3000 ppm
Essential But Not Applied
Carbon C 12.01 Co, 40 %
Hydrogen H 1.01 H,O 6 %
Oxygen O 16.00 0,, H,0 40 %

Plant tissues also contain other elements (Na, Se, Co, Si, Rb, Sr, F, I) which are not needed for
the normal growth and development.



Nutrient Cycle in the Soil-
Plant-Atmosphere systems
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X-ray spectroscopy
Excitation of electrons (example for Fe)
when subjected to high energy X-rays

Incident X-rays
S0 keV

X-ray spectroscopy Is a technique that detects and measures
photons of light that have wavelengths in the X-ray portion of the
electromagnetic spectrum. There are different X-ray spectrometer's
configurations and associated methods that can be used for several
disciplines and fields of application.



Typical XRF Spectrometer
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Typical PIXE Spectrometer
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Germanium Detectors

Typical Resolution vs. Energy
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Germanium detectors are semiconductor diodes having a PIN structure in which the
intrinsic (1) region is sensitive to ionizing radiation, particularly X rays and gamma rays.
Under reverse bias, an electric field extends across the intrinsic or depleted region.
When photons interact with the material within the depleted volume of a detector,
charge carriers are produced and are swept by the electric field to the P and N
electrodes. This charge, which is in proportion to the energy deposited in the detector
by the incoming photon, is converted into a voltage pulse by an integral charge
sensitive preamplifier. (Source: Mirion Technologies - Canberra)



Comparison of Nal(TIl) and
HPGe spectra for ¢°Co
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Source Radioisotopes and Radiation Methodology Soo Hyun Byun, Lecture Notes. McMaster University, Canada.



Comparison of Ge and Si(Li)
Detectors (in the 2 - 20 keV range)
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Source: Rossington, Giauque and Jaklevic, IEEE Transactions on Nuclear Science,, 1992.



CdTe X-Ray Detector

Amptek CdTe X-Ray and Gamma Ray Detector
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The CdTe detector is a thermoelectrically cooled X-ray detector. The high
stopping power of CdTe makes excellent for applications requiring high
detection efficiency at energies up to 100 keV.
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Si-PIN versus CdTe Efficiency:
Probability of a photon
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The photoelectric effect is dominant at low energies but at higher energies above
about 40 keV the photons undergo Compton scattering, depositing less than the full
energy in the detector.

(Source: Amptek Catalog)



Absorbed Fraction

GaAs X-ray detectors
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Silicon Drift Detector (SDD)
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The SDD sensor is fabricated from high purity silicon with a large area contact
on the entrance side facing the incoming X-rays. On the opposite side there is
a central, small anode contact, which is surrounded by a number of
concentric drift electrodes.

When a bias is applied to the SDD detector chip and the detector is exposed
to X-rays, it converts each X-ray detected into an electron cloud with a charge
that is proportional to the characteristic energy of that X-ray.



D and Energy resolution
(FWHM)
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Efficiency versus energy for
a typical SDD

SDD efficiency and transmission
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A solid state sensor working
region evaluation based on
145 eV resolutions
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Opportunities for new sensors
for X-ray spectrometry

« There are some prospective opportunities to the future is
related to the use of conductive polymers for X-ray sensors.

« The conductive polymers can present numerous advantages
such as high sensitivity, short response time, room
temperature operation, and the possibility of tuning both
chemical and physical properties by using different
substituents.

« The conductive polymers used for sensors mainly consist, for
Instance, of polyaniline, polypyrrole and poly (3,4-
ethylenedioxythiophene), among others.



Research on X- ray sensors
should continue...
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Despite different detectors are widely used in X-ray spectrometry, there are
still challenges in relation of needs for improvements for both soft and hard x-
ray detection.

Several studies have been performed in the last decade, all of them looking
forward to new possibilities for advanced X-ray detection based on new
materials and intelligent electronics for signal processing, and other decision-
making computational support related developments.

The concepts of physics and the analysis tools available or developed by
various branches of knowledge and engineering have allowed advances use
of XRF and PIXE in agricultural sciences.

The main challenges are linked to the integration and interpretation of the
results at different scales also the instrumentation effort is the development
of on-the-go and portable X-ray sensors-based spectrometers. These could
allow not only the measurements of stationary elemental concentration
values, but also dynamic studies in relation to soil nutrients availability and
uptake by plants. In addition, to help in real-time the soil fertilization in
variable rate based on the use of precision agriculture concepts.
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