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This presentation
 Relational Database Management System

(DBMS)

 Pyrrho DBMS is a research prototype whose
development began in 2005

 Optimistic Execution

 Serialized Transactions

 Shareable Data Structures

 Big Live Data

 Virtual Data Warehousing

 A Versioned RESTful library for web apps

 Application Programming Interface (API)

 Conclusions and future steps

 Next: Serialized transactions
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Serialized Transactions
 The goal of any DBMS 

 Should be to serialize transactions

 Many users making changes

 Could lead to chaos

 Transactional systems avoid this 

 cost of ~9% performance reported on some commercial systems

 Alas: Business customers don’t think this is worthwhile 

 Isolation levels defined in ISO standard
 READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE

 Textbooks say serializable is needed

 But immediately settle for much less 

 Pyrrho has always had a serialized transaction log ☺

 Even better: Guarantees isolation by preventing conflicts

 Next: Isolation
5
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Transaction Isolation
 Pessimistic: Lock what we plan to change

 All commercial DBMS use this method

 Locking things can get really complicated

 The SERIALIZABLE isolation level results in transactions being 
aborted

 On a step where serialization can no longer be guaranteed

 Optimistic: Validate when we commit

 Then the DBMS must keep transactions isolated

 Different row versions should be private to transaction

 Commit will fail only if a conflicting committer gets there first

 Applications can use row versions to ensure serializability

 Solves conflict only with other users of the same application

 Textbooks say optimistic approach should be avoided

 We showed it can be better with the right implementation 

 Next: StrongDBMS 2017
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Fixing isolation: StrongDBMS

2017-9: A DBMS also with serialized log

But very strong transaction isolation

 Outperformed other DBMS in productivity

 Transaction programming Council (TPC) 
benchmark test C (Clerks taking phone orders)

 The design has many conflicts for more than 10 clerks

Throughput continued to increase for > 100 clerks

 But was a very simple DBMS

 Lacking many features that people expect

 We decided to use isolation idea in Pyrrho

 Next: Shareable data structures
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Shareable Data Structures

StrongDB’s magic ingredient was

SHAREABLE data structures throughout

 Structures are shared but never copied 

 Immutable, all fields readonly or final

 A changed object has a new root node

 Shares all the old ones with previous version

 Brings great advantages for transactions

 Isolation, instant snapshot, just forget on rollback

But is more complex to program

 Next: Adding a node
8



When we add a node

T. Krijnen, and G. L. T. Meertens, “Making B-Trees work for B”. Amsterdam : 

Stichting Mathematisch Centrum, 1982, Technical Report IW 219/83 
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Tree structures

BTree<K,V> is immutable, shareable

When K and V are shareable 

Two-way traversal

Uses immutable bookmarks

Database, Transaction all shareable

Tables, Procedures, Values shareable too

 Transaction is a private copy

Changes are prepared for commit step

Database is built from the tx log

 Next: BTree and transactions
10
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Transaction and B-Tree

 Next: Pyrrho outperforms
11
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Now Pyrrho outperforms others

 In 2021, a V7 demo with good productivity

Productivity increasing up to 50 clerks

 A partial version of Pyrrho

 Optimistic and Serialized, but few other features

 And did not have quite the right structures

 By 2022, we have less productivity but

 Fully Shareable Data Structures approach

 Triggers, cascades, structured data type

Big Live Data support, virtual data warehouse

 Next: Big Live data

https://youtu.be/0YaU59LvgLs
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Big Live Data
 If your data originates in lots of databases

 You could copy the data centrally

 Extract-Transform-Load/Big Data

 But, if it keeps changing this is not good

 Much better to read just what we need now

 And leave data where it is being maintained

 So suppose our data is remote

 A table’s rows come from different databases

 E.g. Sales or product data from different companies

 The available data is provided as a View

 And accessible using HTTP and JSON

 Next: A derived table
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A derived table 

CID A B C …

D1

D1

D2

D3

D3

D3

 Next: Contributing DBMS

D1

D2

D3

Columns from D’s renamed and values probably transformed

Derived = not actually stored centrally

(Contributors take responsibility for renaming columns and 

transforming data to suit us as their schemas will all be different)
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Contributing databases
Contributors provide data in a given form

Hypertext Transfer Protocol (HTTP) request

Representational Structure Transfer (REST)

 Java Structured Object Notation (JSON) 

 They probably don’t have it in this form
 So, they create a VIEW with the right columns

Values probably requires some transformation

Make it available with a given address
Uniform Resource Locator (URL)

With access permissions for our view

Possibly, they might allow some updates

 Next: Defining contribution
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Defining a contribution

 Probably, each contributor creates a VIEW

 Out of data from one or more actual tables

CREATE VIEW (A,B,C..) AS ….

 Next: The central view

A B C …

Can identify each contributor in the 

result view with a contributor id CID 

and maybe other information
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Centrally we then have

 A row type CID,..,A,B,C,.. 

 The local row contains remote data 

 A local table T of contributor details, URLs

 Next: Dividing responsibility

CID … URL

D1 … URL for D1’s data

D2 … URL for D2’s data

D3 … URL for D3’s data

T:

CREATE VIEW V OF (CID..,A,B,C..) AS GET USING T
 OF clause gives V’s row type (specifying column data types) 

 Includes all columns from T except the last (the URL)

 The remaining columns specify the data from the remote view
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Division of responsibility

 Next: View-mediated access

D1

DBMS

Views contributed over HTTP transformed

to a common schema

Contributed data remains under D1’s

control – D1 retains responsibility

D1 interprets requests for change and

inverts the transformations if it can

HTTP

D1’s API

No programming!

API

View configures HTTP access

Change request sent to D1,..
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View-mediated REST access

A view into live data (no copying)

[CREATE VIEW sales_V
(customer, sales, accSalesShare) 

AS SELECT customer, sales, 
(SELECT SUM(sales) FROM custSale

WHERE sales >= u.sales) / 
(SELECT SUM(sales) FROM custSale) 

FROM custSale AS u]

Designed for filtering by item

To discourage retrieval of the entire table

 Next: ABC-Analysis
19



20  Next: SQL for ABC

Example: ABC-Analysis
 Originally, ABC-analysis is a clustering of customers with

regard to their contribution to the sales of a company

 A-customers contribute the most, B is medium, and C-
group customers are least

 The algorithm is defined by 2 threshold values (t1, t2) which
separate A from B and B from C group

 These values are usually t1=50% and t2=85%

ABC           Customer Sales        accumul.S.    …  %

t1 ->

t2 ->
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 Next: No query rewriting 

Code for ABC-Analysis
 Standard Query Language (SQL)

 With a table custSale(customer, sales) 

 Query sales_V and assign a group to each customer according to
its sales percentage ordered by descending sales values.

 [SELECT CASE 
WHEN accSalesShare <= 0.5 THEN 'A'  
WHEN accSalesShare >  0.5  AND accSalesShare <= 0.85 THEN 'B' 

WHEN accSalesShare >  0.85 THEN 'C' 
ELSE NULL 
END as ABC, 
customer, sales, 

CAST(CAST(sales/(SELECT SUM(sales) FROM sales_V) * 100  as decimal(6,2))
as char(6)) || ' %' AS share FROM sales_V
ORDER BY sales DESC]

 Result
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No query rewriting
 Consider the <select list> concept in View

 If it contains aggregation functions

 AVG, MAX, MIN, SUM, EVERY, ANY, COUNT, STDEV.., COLLECT, FUSION, 
INTERSECTION

 During rowset traversal, rows get added in:

 The resulting rowset has one row per group

 Rows in the source are added in to the result rowset

 Using Registers containing various accumulators, sums, multisets, ..

 Now, suppose the view is remote (use REST)

 Sending it to a list of remote contributors

 This used to require a lot of analysis and rewriting extra column
names for the remote query

 COUNT becomes SUM, AVG needs SUM and COUNT, STDEV
needs sums of squares, collections..

 We don’t need to do this any more

 Next: How REST works
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What happens with REST

REST operations use standard formats

For rows, we use JSON documents

An item for each column of the row

Why not add some extra columns for

the Registers in that row?

ARegister for each occurrence of an

aggregation function in the select list

We define how to represent a Register in

JSON

 Next: an example
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A RESTView example

With several remote sources via POST

Grouped aggregations are interesting

select sum(e)+char_length(f),f  from ww
group by f

We no longer rewrite it, but send as is:

24
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How does this work?

Each database returns its answer 

 The data from each has extra fields

 The Registers for aggregates by group

Unpacked and combined by Pyrrho

 Next: The extra fields
25
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Extra Register fields
 The local and remote servers see the same value

expression

 So the registers are supplied in the left-to-right
ordering

 As a Json document with the following items:

 The string value accumulated by the function if any

 The value of MAX, MIN, FIRST, LAST, ARRAY

 A document containing numbered fields for a multiset 
value

 The value of a typed SUM

 The value of COUNT

 The sum of squares (if required for standard deviation 
etc)

 Next: Example
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This is a simple case
 In this case, there is just one hidden field

 The register for SUM(E)

And the values of F don’t overlap 

DB returned 4 rows, which contained
{{"Col0": 11, "F": "Sechs", "$#9": {"0": 6}}}

{{"Col0": 9, "F": "Six", "$#9": {"0": 6}}}

{{"Col0": 8, "F": "Three", "$#9": {"0": 3}}}

{{"Col0": 8, "F": "Vier", "$#9": {"0": 4}}}

DC returned 3 rows
{{"Col0": 11, "F": Ate", "$#9": {"0": 8}}}

{{"Col0": 9, "F": "Five", "$#9": {"0": 5}}}

{{"Col0": 8, "F": "Four", "$#9": {"0": 4}}}

 Next: Transactions and REST
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Transactions and REST
 All data needs a single transaction master

 Because of the two-army problem

 Transactions start from one database

 Called the local database (i.e. local server)

 There is no way to address a remote object directly

 Some fields may come from remote views

 Possibly updatable via REST over HTTP1.1 (safe)

 At most one remote update can be allowed

 When the local commit is called

 Local database locked,  validation performed

 The single remote update is done via HTTP1.1

 And then the local commit can complete/unlock

 Next: Object-Orientation
28
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REST and Object-Orientation
 Pyrrho has a Versioned API

 Some local base table rows are entities

 Pyrrho generates a Versioned class

 With navigation properties like Java Persistence, LINQ

 Support for versions is built in to the DBMS

 Connections may have different row versions

 A versioned object is always for a particular connection

 Some entity fields may be remote (updatable via REST)

 Versioned class C has Get(), Put(), Post(), Delete()

 Fetch Versioned objects from a connection:

 C[] Get<C>(w) and variants

 C[] FindAll<C>(), C FindOne<C>(key), C[] FindWith<C>(where)

 Guaranteed transaction-safe

 Allows long serialized transactions

 Next: Other DBMS
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Future Work: with other DBMS

REST for server communication

Common format (JSON), protocol (HTTP1.1)

Possibly with ETags (RFC7232), Registers

As a non-privileged Internet client

With privileges allocated in the usual way

Need adaptation to SQL dialects

Agreement about transactions

Simplify distributed problem with RESTView

 Next: Conclusions
30
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Conclusions

 This research provides new DBMS tools

 Shareable data structures library

 Serialized transactions

Optimistic: no client locking of data

Better suited to needs of web applications

 Big Live Data implementation

Providing better real-time owned behavior

Optimized for aggregations of remote views

Versioned API for transaction-safe apps

 Next: Links
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Links
Crowe, M. K., Matalonga, S.: Shareable Data 
Structures, on 
https://github.com/MalcolmCrowe/ShareableDataS
tructures

 includes source code for StrongDBMS, PyrrhoV7alpha 
and documentation

Crowe, M. K., Laux, F.: Implementing True Serializable 
Transactions, Tutorial, DBKDA 2021

 https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s

 https://www.iaria.org/conferences2021/filesDBKDA21/

 Version 6.3: https://pyrrhodb.uws.ac.uk

 50 clerks demo: https://youtu.be/0YaU59LvgLs

 Pyrrho blog: https://pyrrhodb.blogspot.com

 Next: References
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