
An Optimistic, RESTful,

Serialized Relational

Database Management

System using immutable

structures
MALCOLM CROWE AND FRITZ LAUX

IARA CONGRESS 2022

 Malcolm Crowe is an Emeritus Professor at the University of the West of Scotland,
where he worked from 1972 (when it was Paisley College of Technology) until
2018.

 He gained a D.Phil. in Mathematics at the University of Oxford in 1979.

 He was appointed head of the Department of Computing in 1985. His funded
research projects before 2001 were on Programming Languages and Cooperative
Work.

 Since 2001 he has worked steadily on PyrrhoDBMS to explore optimistic
technologies for relational databases and this work led to involvement in DBTech,
and a series of papers and other contributions at IARIA conferences with Fritz
Laux, Martti Laiho, and others.

 Prof. Crowe has recently been appointed an IARIA Fellow.

Malcolm Crowe
University of the West of Scotland

Email: malcolm.crowe@uws.ac.uk

2

 Prof. Dr. Fritz Laux was professor (now emeritus) for Database and Information Systems at

Reutlingen University from 1986 - 2015. He holds an MSc (Diplom) and PhD (Dr. rer. nat.) in

Mathematics.

 His current research interests include

• Information modeling and data integration

• Transaction management and optimistic concurrency control

• Business intelligence and knowledge discovery

 He contributed papers to DBKDA and PATTERNS conferences that received DBKDA 2009 and

DBKDA 2010 Best Paper Awards. He is a panellist, keynote speaker, and member of the

DBKDA advisory board.

 Prof. Laux is a founding member of DBTech.net (http://www.dbtechnet.org/), an initiative of

European universities and IT-companies to set up a transnational collaboration scheme for

Database teaching. Together with colleagues from 5 European countries he has conducted

projects supported by the European Union on state-of-the-art database teaching.

 He is a member of the ACM and the German Computer Society (Gesellschaft für Informatik).

Prof. Dr. Fritz Laux
(Retired), Reutlingen University
Email: fritz.laux@reutlingen-university.de

3

https://eu-west-1.protection.sophos.com/?d=dbtechnet.org&u=aHR0cDovL3d3dy5kYnRlY2huZXQub3JnLw==&i=NjA2MmU2NGYwYjBjYmUwZTZlMzUzNGNj&t=NmFLZXNtMDU2NVI5RytLeUp3Z2tzaHRvb1YweURzcG9wWWEyRGVEQ0xoYz0=&h=35c90459daf54f4db46e5a2af80b7f29)

4

This presentation
 Relational Database Management System

(DBMS)

 Pyrrho DBMS is a research prototype whose
development began in 2005

 Optimistic Execution

 Serialized Transactions

 Shareable Data Structures

 Big Live Data

 Virtual Data Warehousing

 A Versioned RESTful library for web apps

 Application Programming Interface (API)

 Conclusions and future steps

 Next: Serialized transactions
4

5

Serialized Transactions
 The goal of any DBMS

 Should be to serialize transactions

 Many users making changes

 Could lead to chaos

 Transactional systems avoid this

 cost of ~9% performance reported on some commercial systems

 Alas: Business customers don’t think this is worthwhile

 Isolation levels defined in ISO standard
 READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE

 Textbooks say serializable is needed

 But immediately settle for much less

 Pyrrho has always had a serialized transaction log ☺

 Even better: Guarantees isolation by preventing conflicts

 Next: Isolation
5

6

Transaction Isolation
 Pessimistic: Lock what we plan to change

 All commercial DBMS use this method

 Locking things can get really complicated

 The SERIALIZABLE isolation level results in transactions being
aborted

 On a step where serialization can no longer be guaranteed

 Optimistic: Validate when we commit

 Then the DBMS must keep transactions isolated

 Different row versions should be private to transaction

 Commit will fail only if a conflicting committer gets there first

 Applications can use row versions to ensure serializability

 Solves conflict only with other users of the same application

 Textbooks say optimistic approach should be avoided

 We showed it can be better with the right implementation

 Next: StrongDBMS 2017

7

Fixing isolation: StrongDBMS

2017-9: A DBMS also with serialized log

But very strong transaction isolation

 Outperformed other DBMS in productivity

 Transaction programming Council (TPC)
benchmark test C (Clerks taking phone orders)

 The design has many conflicts for more than 10 clerks

Throughput continued to increase for > 100 clerks

 But was a very simple DBMS

 Lacking many features that people expect

 We decided to use isolation idea in Pyrrho

 Next: Shareable data structures

8

Shareable Data Structures

StrongDB’s magic ingredient was

SHAREABLE data structures throughout

 Structures are shared but never copied

 Immutable, all fields readonly or final

 A changed object has a new root node

 Shares all the old ones with previous version

 Brings great advantages for transactions

 Isolation, instant snapshot, just forget on rollback

But is more complex to program

 Next: Adding a node
8

When we add a node

T. Krijnen, and G. L. T. Meertens, “Making B-Trees work for B”. Amsterdam :

Stichting Mathematisch Centrum, 1982, Technical Report IW 219/83

9

10

Tree structures

BTree<K,V> is immutable, shareable

When K and V are shareable

Two-way traversal

Uses immutable bookmarks

Database, Transaction all shareable

Tables, Procedures, Values shareable too

 Transaction is a private copy

Changes are prepared for commit step

Database is built from the tx log

 Next: BTree and transactions
10

11

Transaction and B-Tree

 Next: Pyrrho outperforms
11

M. K. Crowe, S Matalonga: StrongDBMS: Built from Immutable Components

12

Now Pyrrho outperforms others

 In 2021, a V7 demo with good productivity

Productivity increasing up to 50 clerks

 A partial version of Pyrrho

 Optimistic and Serialized, but few other features

 And did not have quite the right structures

 By 2022, we have less productivity but

 Fully Shareable Data Structures approach

 Triggers, cascades, structured data type

Big Live Data support, virtual data warehouse

 Next: Big Live data

https://youtu.be/0YaU59LvgLs

13

Big Live Data
 If your data originates in lots of databases

 You could copy the data centrally

 Extract-Transform-Load/Big Data

 But, if it keeps changing this is not good

 Much better to read just what we need now

 And leave data where it is being maintained

 So suppose our data is remote

 A table’s rows come from different databases

 E.g. Sales or product data from different companies

 The available data is provided as a View

 And accessible using HTTP and JSON

 Next: A derived table

14

A derived table

CID A B C …

D1

D1

D2

D3

D3

D3

 Next: Contributing DBMS

D1

D2

D3

Columns from D’s renamed and values probably transformed

Derived = not actually stored centrally

(Contributors take responsibility for renaming columns and

transforming data to suit us as their schemas will all be different)

15

Contributing databases
Contributors provide data in a given form

Hypertext Transfer Protocol (HTTP) request

Representational Structure Transfer (REST)

 Java Structured Object Notation (JSON)

 They probably don’t have it in this form
 So, they create a VIEW with the right columns

Values probably requires some transformation

Make it available with a given address
Uniform Resource Locator (URL)

With access permissions for our view

Possibly, they might allow some updates

 Next: Defining contribution

16

Defining a contribution

 Probably, each contributor creates a VIEW

 Out of data from one or more actual tables

CREATE VIEW (A,B,C..) AS ….

 Next: The central view

A B C …

Can identify each contributor in the

result view with a contributor id CID

and maybe other information

17

Centrally we then have

 A row type CID,..,A,B,C,..

 The local row contains remote data

 A local table T of contributor details, URLs

 Next: Dividing responsibility

CID … URL

D1 … URL for D1’s data

D2 … URL for D2’s data

D3 … URL for D3’s data

T:

CREATE VIEW V OF (CID..,A,B,C..) AS GET USING T
 OF clause gives V’s row type (specifying column data types)

 Includes all columns from T except the last (the URL)

 The remaining columns specify the data from the remote view

18

Division of responsibility

 Next: View-mediated access

D1

DBMS

Views contributed over HTTP transformed

to a common schema

Contributed data remains under D1’s

control – D1 retains responsibility

D1 interprets requests for change and

inverts the transformations if it can

HTTP

D1’s API

No programming!

API

View configures HTTP access

Change request sent to D1,..

19

View-mediated REST access

A view into live data (no copying)

[CREATE VIEW sales_V
(customer, sales, accSalesShare)

AS SELECT customer, sales,
(SELECT SUM(sales) FROM custSale

WHERE sales >= u.sales) /
(SELECT SUM(sales) FROM custSale)

FROM custSale AS u]

Designed for filtering by item

To discourage retrieval of the entire table

 Next: ABC-Analysis
19

20 Next: SQL for ABC

Example: ABC-Analysis
 Originally, ABC-analysis is a clustering of customers with

regard to their contribution to the sales of a company

 A-customers contribute the most, B is medium, and C-
group customers are least

 The algorithm is defined by 2 threshold values (t1, t2) which
separate A from B and B from C group

 These values are usually t1=50% and t2=85%

ABC Customer Sales accumul.S. … %

t1 ->

t2 ->

21
 Next: No query rewriting

Code for ABC-Analysis
 Standard Query Language (SQL)

 With a table custSale(customer, sales)

 Query sales_V and assign a group to each customer according to
its sales percentage ordered by descending sales values.

 [SELECT CASE
WHEN accSalesShare <= 0.5 THEN 'A'
WHEN accSalesShare > 0.5 AND accSalesShare <= 0.85 THEN 'B'

WHEN accSalesShare > 0.85 THEN 'C'
ELSE NULL
END as ABC,
customer, sales,

CAST(CAST(sales/(SELECT SUM(sales) FROM sales_V) * 100 as decimal(6,2))
as char(6)) || ' %' AS share FROM sales_V
ORDER BY sales DESC]

 Result

22

No query rewriting
 Consider the <select list> concept in View

 If it contains aggregation functions

 AVG, MAX, MIN, SUM, EVERY, ANY, COUNT, STDEV.., COLLECT, FUSION,
INTERSECTION

 During rowset traversal, rows get added in:

 The resulting rowset has one row per group

 Rows in the source are added in to the result rowset

 Using Registers containing various accumulators, sums, multisets, ..

 Now, suppose the view is remote (use REST)

 Sending it to a list of remote contributors

 This used to require a lot of analysis and rewriting extra column
names for the remote query

 COUNT becomes SUM, AVG needs SUM and COUNT, STDEV
needs sums of squares, collections..

 We don’t need to do this any more

 Next: How REST works

23

What happens with REST

REST operations use standard formats

For rows, we use JSON documents

An item for each column of the row

Why not add some extra columns for

the Registers in that row?

ARegister for each occurrence of an

aggregation function in the select list

We define how to represent a Register in

JSON

 Next: an example

24

A RESTView example

With several remote sources via POST

Grouped aggregations are interesting

select sum(e)+char_length(f),f from ww
group by f

We no longer rewrite it, but send as is:

24

25

How does this work?

Each database returns its answer

 The data from each has extra fields

 The Registers for aggregates by group

Unpacked and combined by Pyrrho

 Next: The extra fields
25

26

Extra Register fields
 The local and remote servers see the same value

expression

 So the registers are supplied in the left-to-right
ordering

 As a Json document with the following items:

 The string value accumulated by the function if any

 The value of MAX, MIN, FIRST, LAST, ARRAY

 A document containing numbered fields for a multiset
value

 The value of a typed SUM

 The value of COUNT

 The sum of squares (if required for standard deviation
etc)

 Next: Example

27

This is a simple case
 In this case, there is just one hidden field

 The register for SUM(E)

And the values of F don’t overlap

DB returned 4 rows, which contained
{{"Col0": 11, "F": "Sechs", "$#9": {"0": 6}}}

{{"Col0": 9, "F": "Six", "$#9": {"0": 6}}}

{{"Col0": 8, "F": "Three", "$#9": {"0": 3}}}

{{"Col0": 8, "F": "Vier", "$#9": {"0": 4}}}

DC returned 3 rows
{{"Col0": 11, "F": Ate", "$#9": {"0": 8}}}

{{"Col0": 9, "F": "Five", "$#9": {"0": 5}}}

{{"Col0": 8, "F": "Four", "$#9": {"0": 4}}}

 Next: Transactions and REST

28

Transactions and REST
 All data needs a single transaction master

 Because of the two-army problem

 Transactions start from one database

 Called the local database (i.e. local server)

 There is no way to address a remote object directly

 Some fields may come from remote views

 Possibly updatable via REST over HTTP1.1 (safe)

 At most one remote update can be allowed

 When the local commit is called

 Local database locked, validation performed

 The single remote update is done via HTTP1.1

 And then the local commit can complete/unlock

 Next: Object-Orientation
28

29

REST and Object-Orientation
 Pyrrho has a Versioned API

 Some local base table rows are entities

 Pyrrho generates a Versioned class

 With navigation properties like Java Persistence, LINQ

 Support for versions is built in to the DBMS

 Connections may have different row versions

 A versioned object is always for a particular connection

 Some entity fields may be remote (updatable via REST)

 Versioned class C has Get(), Put(), Post(), Delete()

 Fetch Versioned objects from a connection:

 C[] Get<C>(w) and variants

 C[] FindAll<C>(), C FindOne<C>(key), C[] FindWith<C>(where)

 Guaranteed transaction-safe

 Allows long serialized transactions

 Next: Other DBMS

30

Future Work: with other DBMS

REST for server communication

Common format (JSON), protocol (HTTP1.1)

Possibly with ETags (RFC7232), Registers

As a non-privileged Internet client

With privileges allocated in the usual way

Need adaptation to SQL dialects

Agreement about transactions

Simplify distributed problem with RESTView

 Next: Conclusions
30

31

Conclusions

 This research provides new DBMS tools

 Shareable data structures library

 Serialized transactions

Optimistic: no client locking of data

Better suited to needs of web applications

 Big Live Data implementation

Providing better real-time owned behavior

Optimized for aggregations of remote views

Versioned API for transaction-safe apps

 Next: Links

32

Links
Crowe, M. K., Matalonga, S.: Shareable Data
Structures, on
https://github.com/MalcolmCrowe/ShareableDataS
tructures

 includes source code for StrongDBMS, PyrrhoV7alpha
and documentation

Crowe, M. K., Laux, F.: Implementing True Serializable
Transactions, Tutorial, DBKDA 2021

 https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s

 https://www.iaria.org/conferences2021/filesDBKDA21/

 Version 6.3: https://pyrrhodb.uws.ac.uk

 50 clerks demo: https://youtu.be/0YaU59LvgLs

 Pyrrho blog: https://pyrrhodb.blogspot.com

 Next: References
32

https://github.com/MalcolmCrowe/ShareableDataStructures
https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s
https://www.iaria.org/conferences2021/filesDBKDA21/
https://pyrrhodb.uws.ac.uk/
https://youtu.be/0YaU59LvgLs
https://pyrrhodb.blogspot.com/

33

References
Crowe, M. K., Laux, F.: Reconsidering Optimistic Algorithms for

Relational DBMS, DBKDA 2020

Crowe, M. K., Matalonga, S., Laiho, M: StrongDBMS, built from

immutable components, DBKDA 2019

Crowe, M. K., Fyffe, C: Benchmarking StrongDBMS, Keynote

speech, DBKDA 2019

Crowe, M. K., Laux, F.: DBMS Support for Big Live Data, DBKDA

2018

Crowe, M.K., Begg, C.E., Laux, F., Laiho, M: Data Validation for Big

Live Data, DBKDA 2017

Krijnen, T., Meertens, G. L. T.: “Making B-Trees work for B”.

Amsterdam : Stichting Mathematisch Centrum, 1982, Technical
Report IW 219/83

33

https://www.iaria.org/conferences2019/filesDBKDA19/MalcolmCrowe_CallumFyffee_Keynote_BenchmarkingStrongDBMS.pdf
https://www.iaria.org/conferences2018/filesDBKDA18/MalcolmCrowe_DBMS_Support.pdf

