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Introduction

» Machine Learning (ML) is applied in the industry by now

» Solutions for specific problems are often presented in detail

» Literature often lacks integration and Management steps

» Respective technology and frameworks impact security policies
» Management of gigital Objects in Cyber-physical Systems (cps)

» Using Digital Twins (DT) of Shopfloor devices

» Ability of finegrained modularization and configuration

» |nterconnection of modules forming a task pipeline

» Implementation of common module interfaces

» Exchangeable and accountable task-related deployments
» Machine Learning Operations (MLOps)

» Persistence of data versions whenever data is processed

» Formalizing modules for the different phaseseg., pata

Management, ML preparation, Model training & Deployment within applications
» Techniques & tools for creating reproducibie ML Pipelines e,

re-runs of a pipeline constellation using a data-version results in same outcome



Hierarchical Setups of Cyber-Physical systems
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» Pipelines formalized by Expert Knowledge (sson object, xmL, ..)
» Implementation of MLOps-conform modules
» Module-specific Evaluation, KPIs, Audits, Monitoring, etc.

» Physical placement of modules in relation to CPS constellation
and the problem on hand

[

» Technical dept and anti-patterns must be considered

» Various frameworks for defining, composing and deploying
modules



Accountable Module Deployment Aspects
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» Enable and deploy containerized cross-company SCENArios
» Focus on generic shopfloor environments
» Global Ecosystem enables definition of client-side operations

Blockchain, Identity Provider, Container Registry, Secret Storage, ..
» Dynamic deployment in client-side environment
» Trust among participants and accountability of each
operation by blockchain technology
» Additional decoupied processing logic by Smart Contracts
» Extensible framework enables a variety of scenarios



Modular and Flexible Pipelines

> MOdUleS app|y common interfaces (as indicated by the circles the following slides)
> COnﬁgU ration e.g., parameters used by the module logic
> Foreign System Interaction e.g., Communication with systems foreign to the
module, e.g., shopfloor devices, other modules, etc.
> Logglng e.g., persist statistics, metadata and additional information in order to increase
accountability
> Results e.g., storing the modules outcomes

> in pUt e.g., using the data previously persisted by a foreign module

» Each module persists data in its task-specific storage
e.g., decoupling & allowing parallel access
» MLOps scenario with one sensor (fllowing siides)
» Receive Temperature values eg, realize a connection with the physical device
» Ensure data quality esg. assess the basic quality of a dataset version
P Perform preprocessing e.g., labeling of dataset version intervals
P Train models eg., predict a label for the next interval



Modular and Flexible Pipelines
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> Conﬁgu ration with device prOtOCO|S e.g., Open Platform Communications Unified
Architecture (OPC/UA) and target interface

» Persistence of sensor values alongside additional metadata
» Logging of additional module-specific statistics



Modular and Flexible Pipelines
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Ensure basic data quality
» Configure value ranges & completeness indicators
P Receive previously persisted data
» Persistence of assessed data

» Logging of data quality assessment justification



Modular and Flexible Pipelines
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» Automatable data cleansing technique configurations
P Persist labeled data set version, ready for ML training
» Logging of labeling processing

10/14



Modular and Flexible Pipelines
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ML model training
» Configure the ML model training and other module-specific

para meters e.g., architecture, hyperparameters, quality metrics, etc
» Persist model alongside evaluation & module statistics 11/14



Dynamic and Extensible Pipelines

v

Deploying reSUIting models e.g., dedicated REST API, integration into application,
microservices, etc. CaN be pal’t Of CI/CD

Obvious increase in pipeline complexity when additional
Sensor(s) become aVaila ble in addition, Deadlocks or Bottlenecks can occur

Utilization of multiple modules in parallel in different locations
Exchangeable modules 'on-the-fly’ & extensible pipelines

Constant monitoring and evaluation of each module,
technology, tool and system involved in the scenario



Conclusion & Future Work

» Flexible, module-based and accountability-enhanced pipeline
» Selected quality requirements on module interactions
» Dynamic alterations to exsing module pipelines & module
configuration
» Example scenario with one data source & discussion of
increased complexity when the shopfloor changes
» Future Work
» Investigate the integration of AutoML techniques

» Using simulations of industrial environments for testing
scenario specific pipeline compositions beforehand
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