Detecting Novel Variants of Application Layer (D)DoS Attacks using Supervised Learning

Etienne van de Bijl, Jan Klein, Joris Pries, Rob van der Mei, Sandjai Bhulai

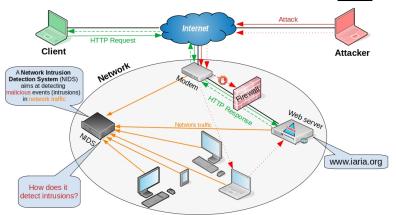
Stochastics, Centrum Wiskunde & Informatica. (Netherlands)
Faculty of Science, Vrije Universiteit Amsterdam. (Netherlands)
Contact email: evdb@cwi.nl

ABOUT ETIENNE VAN DE BIJL

- BSc (2017) & MSc (2020) in business analytics at the Vrije Universiteit Amsterdam, Netherlands
- Academy assistant at the Vrije Universiteit Amsterdam, Netherlands (2017 - 2018)
- PhD student (2019 2023) at the Centrum Wiskunde & Informatica, Netherlands
- Topics of interests: data mining, machine learning, cybersecurity, diffusion models, spread of misinformation

July 27, 2022

INTRODUCTION



INTRUSION DETECTION SYSTEMS

Signature-based	Anomaly-based
Compares observed network events against patterns that correspond to known threats	Searches for malicious traffic by constructing a notion of normal behavior and flags activities which do not conform to this notion
+ Effective against known attacks - Time consuming for experts - Only finds known attacks	+ Able to detect novel attacks- Suffers a high false-positive rate

Machine learning (ML) \rightarrow ability to overcome this high false-positive rate

RESEARCH GOAL

Research on (novel) intrusion detection with ML:

- $\textbf{0} \ \, \mathsf{Closed\text{-}world} \ \, \mathsf{assumption} \, \to \mathsf{identical} \ \, \mathsf{attacks}$
- $oldsymbol{0}$ Open-world assumption ightarrow unrelated attacks

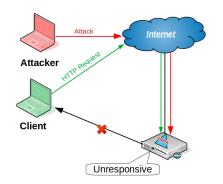
What about detecting related cyberattacks in an open-world setting?

We study to what extent **ML models** are accurately able to detect **novel variants** of known cyberattacks

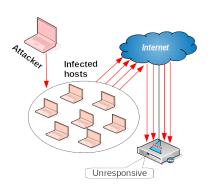
Scope: detecting application layer (distributed) denial-of-service attacks targeting the HTTP protocol of a web server

(D)DOS ATTACKS EXPLAINED

Denial-of-Service attack (DoS)



Distributed Denial-of-Service attack (DDoS)



DATASETS

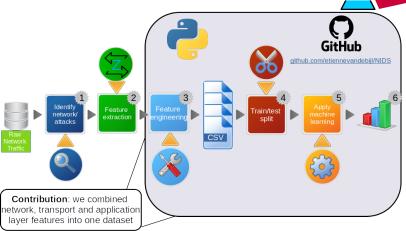
Selected the CIC-IDS-2017 & CIC-IDS-2018 intrusion detection datasets from the Canadian Institute of Cybersecurity \rightarrow contains a variety of DoS and DDoS attacks & publicly available

SlowHTTPTest.

Goldeneye

Slowloris

WORKFLOW - FROM DATA TO RESULTS



FINAL DATASET

Meta-data

103 IP, TCP, and HTTP features

CIC-IDS-2017: 524,698 interactions (instances)

CIC-IDS-2018: 9,595,037 interactions

CIC-IDS-2017 CIC-IDS-2018 49.2% 65.1% 0.2% 1.3%

1.5% 0.4%

0.0% 11.2% 30.2% 18.8% 18.2% 3.1%

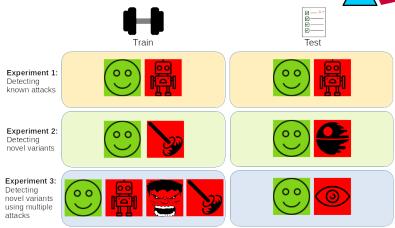
0.3% 0.0% 0.4% 0.1%

Observation 1: CIC-IDS-2018 is larger and more imbalanced

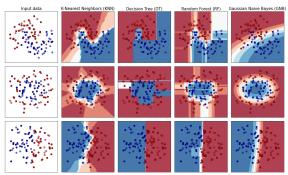
Observation 2: malicious class sizes differ a lot \rightarrow each attack has

its own characteristics

EXPERIMENTAL SETUP 1

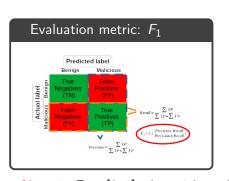


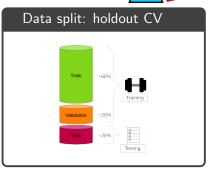
MACHINE LEARNING MODELS



Key insight: models learn differently from data \rightarrow different predictions for the instances

EXPERIMENTAL SETUP 2



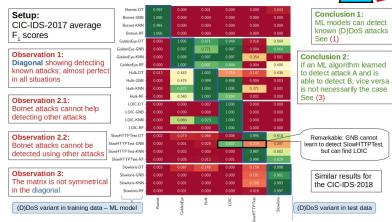


Note 1: $F_1 \in [0,1]$ where 1 is optimal

Note 2: stratified split respecting class distributions (slide 9)

Note 3: CIC-IDS-2017 \rightarrow 20 random splits, CIC-IDS-2018 \rightarrow 10

RESULTS EXPERIMENTS 1 & 2



RESULTS EXPERIMENT 3

CIC-IDS-2017 detecting novel attack using combinations of known other attacks

Observation 1:

Hulk dominantly useful to achieve highest score

Observation 2.1: KNN and DT obtain

highest scores

Observation 2.2: Hulk and LOIC best detected with ML

Observation 3:

Highest score obtained with small set of known attacks

f(x)=y

Test Model DT

KNN

DT 0.878

0.460

0.821

Highest average F, score

more known attacks do. not achieve a higher novel detection rate. See (3)

What about the CIC-IDS-2018?

RESULTS EXPERIMENT 3

Setup:

CIC-IDS-2018 detecting novel attack using combinations of known other attacks

Test

f(x)=y

Model Score Highest average F, score

GNB more robust against strong class imbalance

0.853

0.985

more known attacks do not achieve a higher novel detection rate See (3)

Observation 2.1: Botnet attacks could not be detected

KNN

GNB

Conclusion 2:

Higher imbalance of classes affects performance DT and RF considerably See (1.1)

Observation 2.2: Hulk, LOIC and Slowloris

hest detected with MI.

GNB 0.922

Observation 3:

Highest score obtained with small set of known. attacks

SUMMARY

We observed that:

- ML models are to a great extent able to detect known (D)DoS attacks in a closed world setting
- There are situations where these models are able to detect a novel variant when they are trained to detect a different variant
- Training on imbalanced data has an adverse effect on the evaluation performance of some ML classifiers
- It is not necessary to use many (D)DoS variants to detect a novel attack → sometimes a few known attacks can already lead to the highest novel detection rate

CONCLUSION AND FUTURE WORK

ML models can detect (D)DoS cyberattacks almost as well as signature-based approaches, but also have the capability to detect novel variants

Future directions:

- Study a different type of cyberattacks (e.g. web-attacks)
- Use different combinations of protocols (e.g. TCP and FTP)

THANKS FOR LISTENING

Do you have any questions? Or email me: evdb@cwi.nl