

Electrophysiological Answer to a Checkerboard Stimulus

A Pilot Study

<u>Ana Isabel Ferreira</u>, Ana Ferrão, Catarina Andrade, Mónica Baptista, Cláudia Quaresma, Carla Quintão

The Seventh International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

Lisbon, October 2022

ACADEMIC BACKGROUND

- PhD student in Biomedical Engineer (in development, FCT UNL)
- Master in Neuropsychology (2015, ICS- UCP)
- Bachelor in Occupational Therapy (2004, ESSA)

PROFESSIONAL EXPERIENCE

- Adjunct Professor at the Higher School of Health Polytechnic Institute of Beja (since 2017, ESSA IPBeja)
- Occupational Therapist in a Pediatric Hospital, working with infants and children with developmental disorders (from 2007 until 2018, CHULC)

SCIENTIFIC AREAS OF INTEREST

Biomedical recorder data | Visual skills | Electrophysiology

Neurodevelopmental disorders I Aquatic therapy

2. Literature review – VEP

- Electroencephalography is used in neuroscience to explore the electrical activity of living neurons [1]
- Visual Evoked Potentials (VEP) are massed electrical signals generated by occipital cortical areas in response to visual stimulation [2].
- The most used pattern is a checkerboard with black and white squares [3]. The pattern is alternated without change in the luminance at a specific reversal rate [2].

Figure 1: Electrodes positioning in VEP

2. Literature review – VEP

Figure 2: Infant in incubator (representation)

Peripheral structures not completely formed [4]

Myelinization occurs latter [5]

Early visual stimulus exposure [6]

2. Literature review – EDA

The Electrodermal Activity (EDA) signal is an electrical manifestation of the sympathetic innervation of the sweat glands;

A recent study with newborns has shown that EDA parameters seem sensitive in detecting sympathetic regulation changes in early postnatal life [7];

The skin biomarkers of preterm birth could be seriously altered [8];

BUT

The EDA of PT infants has not ben measured when associated with a visual stimulus!

How does visual and electrodermal signal

change in preterm born infants during

the first months of life?

3. Materials and methods

experimental protocol

Recruitment in neurodevelopmental appointment

parents give informed consent

Quiet room with low level of natural light.

Figure 3: Equipment in experimental setup

3. Materials and methods

- experimental protocol

Preparation ≈15 M

Baby is seated on the parent's lap »»» seated 70 cm from the screen

EDA signals »»» 2 electrodes (external side of the left foot)

VEP signal - cap on infant's head with electrodes

Figure 4: Positioning electrodes for EDA collection ¹⁰

3. Materials and methods - stimuli

3. Materials and methods – data collection

BABY BINOCULARITY

Impedance Measurement

Figure 7: Positioning of electrodes used

Figure 8: Impedance measure in gRecorder software

13

 \times

3. Materials and methods – VEP data processing

Figure 9 : Signal after DC remove

3. Materials and methods – VEP data processing

3. Materials and methods – VEP data processing

3. Materials and methods – EDA data processing

- Reading the .txt file and .hdf5zfile;

- Downsampling signal (500 Hz «« 100Hz)

Move average filter - window of 50 sample points;
DDA-phasic and tonic components [16]

- Parameters extraction

(n° responses, latency time, amplitude, area and conductance level)

3. Materials and methods – EDA data processing

Figure 13: Discrete decomposition analysis

4. Results

Formation of visual evoked potentials

Figure 15: VEP changes during sample collection using GUIDE interface for a 6-month-old infant

=RE

TABLE II - PARAMETERS EXTRACTED FROM LEDALAB

	N. responses	Amplitude (µS)	Area (nS ²)	Latency time (s)	Skin conductance level (µS)
 P.1 (4 M)	29	8.68	48.87	0.79	6.39
 P.2 (6 M)	38	4.51	37.11	0.75	10.15

4. Results

Figure 17: Infant performing the evaluation

Latencies for the older child are lower, as her visual system is more mature, which aligns with the previous literature [18].

The shape of the potentials for the two infants is "larger" than would be predicted for an adult, which is in agreement with the consulted literature [2] [12].

The arousal state is one of the behavioral characteristics that could influence good-quality pattern VEP recordings [2];

In this way, it is expected that negative components preceding and following positivity appear at 2-4 months of age, and the waveform is adult-like by 68 months of age [19].

4. Results

- Results of the pilot application are coherent with results obtained for other types of stimulation;
 - The older infant presents a higher number of responses to the stimuli, a lower amplitude [20], a lower latency time [21], and a higher skin conductance level [22] in comparison to the younger one.

-

These are all related to the maturation of the nervous system and, consequently, greater reactivity to the stimuli.

5. Conclusions and future work

The experimental setup could be used to study VEP and EDA in infants, helping compare recordings from different age groups;

This experiment has shown that visual stimuli affect visual and electrodermal responses that can be corresponded to the infants' age;

The combined analysis may correlate more effectively with infant development.

5. Conclusions and future work

Integrate electrophysiological data with clinical and developmental data

Holistic longitudinal assessment with collections of signals in premature and full-term infants: compare the two groups and their evolution over time.

Integration of data from statistically significant sample sizes in biomedical health records

References

[1] M. Carter and J. Shieh, "Chapter 4 - Electrophysiology", in Guide to Research Techniques in Neuroscience, 2nd ed., Academic Press, pp. 89-115, 2015, doi: 10.1016/B978-0-12-800511-8.00004-6

[2] E. Birch and V. Subramanian, "Chapter 23 - Visual evoked potentials in infants and children", in Aminoff's Electrodiagnosis in clinical neurology, 6th ed., Elsevier, pp. 505-518, 2012

[3] R. Kothari, P. Bokariya, S. Singh and R. Singh, "A Comprehensive review on methodologies employed for visual evoked potentials", Scientifica (Cairo), 2016:9852194, Feb 2016, doi: 10.1155/2016/9852194

[4] D. Bre´mond-Gignaca, H. Copinc, A. Lapillonned, S. Milazzo, "Visual development in infants: physiological and pathological mechanisms", Current Opinion in Ophthalmology

[5] P. Van, M. Alison, B. Morel, J. Beck, N. Bednarek, L. Hertz-Pannier, G. Loron, Advanced Brain Imaging in Preterm Infants: A Narrative Review of Microstructural and Connectomic Disruption, doi: <u>https://doi.org/10.3390/children9030356</u>

[6] C. Fontana, A. Carli , D. Ricci, F. Dessimone, S.Passera, N. Pesenti, M. Bonzini, L. Bassi, L. Squarcina, C. Cinnante, F. Mosca, M. Fumagalli, "Effects of Early Intervention on Visual Function in Preterm Infants: A Randomized Controlled Trial. Frontiers in Pediatrics. 2020, doi: 10.3389/fped.2020.00291

[7] Z. Visnovcova, M. Kozar, Z. Kuderava, M. Zibolen, N. Ferencova and I. Tonhajzerova, "Entropy Analysis of Neonatal Electrodermal Activity during the First Three Days after Birth", Entropy, vol. 24(3), pp. 422, Mar 2022, doi: 10.3390/e24030422

[8] M. Visscher et al., "Biomarkers of neonatal skin barrier adaptation reveal substantial differences compared to adult skin", Pediatric Research, vol. 89, pp. 1208-1215, Jun 2020, doi: 10.1038/s41390-020-1035-y

References

[9] S. Dimitriadis and A. Marimpis, Enhancing Performance and Bit Rates in a Brain-Computer Interface System With Phase-to-Amplitude Cross-Frequency Coupling: Evidences From Traditional c-VEP, Fast c-VEP, and SSVEP Designs, Front. Neuroinform, vol.12, Mai 2018, doi: 10.3389/fninf.2018.00019

[10] M. Michalczuk, B. Urban, B. Chrzanowska-Grenda, M. Oziębło-Kupczyk and Alina Bakunowicz-Łazarczyk, An Influence of Birth Weight, Gestational Age, and Apgar Score on Pattern Visual Evoked Potentials in Children with History of Prematurity, Neural plasticity 2015, pp. 754864, Aug 2015, doi: 10.1155/2015/754864

[11] D. Birtles, O. Braddick, J. Wattam-Bell, A. Wilkinson and J. Atkinson, Orientation and motion-specific visual cortex responses in infants born preterm, NeuroReport, vol.18(18), pp. 1975-1979, Dec 2007, doi: 10.1097/WNR.0b013e3282f228c8

[12] M. Roy, M. Barsoum-Homsy, J. Orquin and J. Benoit, "Maturation of Binocular Pattern Visual Evoked Potentials in Normal Full-Term and Preterm Infants from 1 to 6 Months of Age", Pediatric Research, vol. 37(2), pp. 140-144, Feb 1995, doi: 10.1203/00006450-199502000-00002

[13] S. Agyei, M. Holth, F. Van der Weel, A. Van der Mer, "Longitudinal study of perception of structured optic flow and random visual motion in infants using high-density EEG", Developmental Science, 21 August 2014

[14] M. O'Reilly et al., Ophthalmological, cognitive, electrophysiological and MRI assessment of visual processing in preterm children without major neuromotor impairment, Developmental Science, vol. 13(5), pp. 692-705, Aug 2010, doi: 10.1111/j.1467-7687.2009.00925.x

[15] I. Iturrate, R. Chavarriaga and J. del R.Millán, "Chapter 23 - General principles of machine learning for brain-computer interfacing" in Handbook of Clinical Neurology, Science Direct, pp. 311-328, 2020, doi: 10.1016/B978-0-444-63934-9.00023-8₃₀

References

[16] H. F. Posada-Quintero and K. H. Chon, "Innovations in electrodermal activity data collection and signal processing: A systematic review," Sensors (Switzerland), vol. 20, no. 2, 2020, doi: 10.3390/s20020479.

[17] Ledalab©, Documentation, Ledalab©. [Online]. Available from: <u>www.ledalab.de/documentation.htm</u>

[18] S. Lippé, M.-S. Roy, C. Perchet and M. Lassonde, "Electrophysiological markers of visuocortical development", Cerebral Cortex, vol. 17(1), pp. 100-107, Jan 2007, doi: 10.1093/cercor/bhj130

[19] M. Taylor and D. McCulloch, "Visual Evoked Potentials in Infants and Children", Journal of Clinical Neurophysiology", vol. 9(3), pp. 357-372, Aug 1992, doi: 10.1097/00004691-199207010-00004

[20] D. Fowles, G. Kochanska and K. Murray, "Electrodermal activity and temperament in preschool children", Psychophysiology, vol. 37(6), pp. 777-787, Dec 2000, doi: 10.1017/S0048577200981836

[21] M. Shibagaki, T. Yamanaka and T. Furuya, "Effects of attention state on electrodermal activity during auditory stimulation of children", Perceptual and motor skills, vol. 75(1), pp. 35-43, Aug 1992, doi: 10.2466/pms.1992.75.1.35

[22] K. G. Hernes, L. Mørkrid, A. Fremming, S. Ødegården, Ø. G. Martinsen and H. Storm, "Skin conductance changes during the first year of life in full-term infants", Pediatric Research, vol. 52(6), pp. 837-843, Dec 2002, doi: 10.1203/00006450-200212000-00005

OUR TEAM APPRECIATE YOUR ATTENTION AND FEEDBACK!

Ana I. Ferreira aix.ferreira@campus.fct.unl.pt

Mónica Baptista monica.baptista@chlc.min-saude.pt

Ana Ferrão acp.ferrao@campus.fct.unl.pt

Cláudia Quaresma q.claudia@fct.unl.pt

Catarina Andrade cs.andrade@campus.fct.unl.pt

Carla Quintão cmquintao@fct.unl.pt