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Literature -I . GOALS

review
Present an integrated experimental setup to assess the evolution
of visual system development in preterm infants;

Materials and
methods

Present and analyze the results of a pilot application with two
preterm infants.

Result '
esults Contribute to know

How does visual and electrodermal signal change in

Conclusion and . . _ .
future work preterm born infants during the first months of life?



2. Literature review — VEP

Electroencephalography is used in neuroscience to explore the electrical activity of living
neurons [1]

Visual Evoked Potentials (VEP) are massed electrical signals generated by occipital cortical
areas in response to visual stimulation [2].

The most used pattern is a checkerboard with black and white squares [3]. The pattern is
alternated without change in the luminance at a specific reversal rate [2].

Ground Electrode  ——

Figure 1: Electrodes positioning in VEP



2. Literature review - VEP

Peripheral structures not completely
formed [4]

Myelinization occurs latter [5]

Early visual stimulus exposure [6]

Figure 2: Infant in incubator
(representation)



2. Literature review — EDA

The Electrodermal Activity (EDA) signal is an electrical manifestation of the sympathetic
innervation of the sweat glands;

A recent study with newborns has shown that EDA parameters seem sensitive in detecting
sympathetic regulation changes in early postnatal life [7];

The skin biomarkers of preterm birth could be seriously altered [8];

BUT

The EDA of PT infants has not ben measured when associated with a visual stimulus!



How does visual and electrodermal signal

O O change in preterm born infants during

l m the first months of life?
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3. Materials and methods

experimental protoco

Recruitment in neurodevelopmental
appointment

parents give informed consent

Timeline

Quiet room with low level of natural light.

Figure 3: Equipment in experimental setup



3. Materials and methods

— experimental protocol

Preparation =15 M

Baby is seated on the parent's lap »»»
seated 70 cm from the screen

EDA signals »»» 2 electrodes (external
side of the left foot)

VEP signal - cap on infant’'s head with
electrodes
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Figure 4: Positioning electrodes for EDA collection
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Figure 5: Experimental setup



3. Materials and methods - stimuli

Checkerboard pattern

(squares black and white)

Inverted every 1s

total of 120s

Figure 6: Checkerboard pattern

red cross



3. Materials and methods — data collection
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3. Materials and methods — VEP data processing
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3. Materials and methods — VEP data processing

Signal division 120 epoch
Cut:
100ms before stimuli 700ms after [12]-[13]
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Figure 10: Signal division in 120 epoch



3. Materials and methods — VEP data processing

Filtfilt function
4th order low filter 10 Hz [14]

Removing artifacts based on standard
deviation 0.6 [15]
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Figure 11: Signal after apply the 4t order low

, Figure 12: Signal after removing artifictas
filter 10 Hz



3. Materials and methods — EDA data processing

- Reading the .txt file and .hdf5zfile;
- Downsampling signal (500 Hz «« 100Hz)

- Move average filter - window of 50 sample points;

- DDA-phasic and tonic components [16]

- Parameters extraction
(n° responses, latency time, amplitude, area and conductance level)

- Time window 0,5 to 1s from each stimulus and amplitude
above 0.01[17
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3. Materials and methods — EDA data processing
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Figure 13: Discrete decomposition analysis
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3. Materials and methods — sample

Gestational age
Birth weight
Correct age

Weight

T. Assessment
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VEP

4. Results ih.
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Figure 14: Selection of the signal epochs to use for processing
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4. Results
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Figure 15: VEP changes during sample collection using GUIDE interface for a 6-month-old infant
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Figure 16: PO8 of four (left) and a six-month (right) old infants
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4. Results ih. EDA

TABLE Il - PARAMETERS EXTRACTED FROM LEDALAB

N.responses Amplitude Area Latency time Skin
(uS) (nS2) (s) conductance
level (puS)
P.1 29 8.68 48.87 0.79 6.39
(4 M)
P.2 38 4.51 37.11 0.75 10.15

(6 M)
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Figure 17: Infant performing
the evaluation

4. Results

Latencies for the older child are lower, as her visual system is more
mature, which aligns with the previous literature [18].

The shape of the potentials for the two infants is "larger" than would be
predicted for an adult, which is in agreement with the consulted
literature [2] [12].

The arousal state is one of the behavioral characteristics that could
influence good-quality pattern VEP recordings [2];

In this way, it is expected that negative components preceding and
following positivity appear at 2-4 months of age, and the waveform is
adult-like by 68 months of age [19].
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- Results of the pilot application are coherent with results obtained for other
types of stimulation;

The older infant presents a higher number of responses to the stimuli, a

lower amplitude [20], a lower latency time [21], and a higher skin
conductance level [22] in comparison to the younger one.

These are all related to the maturation of the nervous system and,
consequently, greater reactivity to the stimuli.




5. Conclusions and future work

The experimental setup could be used to study VEP and

EDA in infants, helping compare recordings from different
age groups;

This experiment has shown that visual stimuli affect

visual and electrodermal responses that can be
corresponded to the infants' age;

The combined analysis may correlate more effectively
with infant development.
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5. Conclusions and future work

Integrate electrophysiological data with clinical and
developmental data

Holistic longitudinal assessment with collections of signals in
premature and full-term infants: compare the two groups
and their evolution over time.

Integration of data from statistically significant sample sizes in
biomedical health records
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