
Modern Software Evolution:
The Path from Working Software

to Green Software

Csaba Szabó

Technical university of Košice, Slovakia

csaba.szabo@tuke.sk

GREEN 2022, October 16-20, 2022

Lisbon, Portugal

mailto:csaba.szabo@tuke.sk

About the Author

Csaba Szabó completed his MSc. and PhD.
studies and habilitated in Computer Science at
the Faculty of Electrical Engineering and
Informatics, Technical University of Košice,
Slovakia, where he is currently working as
Associate Professor at the Department of
Computers and Informatics. During his PhD
studies, he spent one semester at Faculty of
Informatics, Eötvös Loránd University, Budapest,
Hungary, which also included solving of technical
tasks for the local branch of the ALSTOM
company. He also completed short term studies
in Szeged, Hungary and Subotica, Serbia.

https://kpi.fei.tuke.sk/sk/person/csaba-szabo

https://kpi.fei.tuke.sk/sk/person/csaba-szabo

About the Author

He is involved in different research areas, mainly in green software, software evolution,
software project management, software testing and virtual reality. In these fields, he has
international cooperation with researchers from numerous European countries (AT, BG,
HR, HU, NL, PT, RO, RS) and Egypt. He had invited talks at Mipro 2019 (Opatija, Croatia)
and GSERITA 2022 (Virtual event) in the topic of green software. He led the
ERASMUS+ project Focusing Education on Composability, Comprehensibility and
Correctness of Working Software (2017-1-SK01-KA203-035402), and he is member of
the project SusTrainable - Promoting Sustainability as a Fundamental Driver in Software
Development Training and Education (2020-1-PT01-KA203-078646). Currently, he is
also actively involved and applying his research results in frame of the project Intelligent
Systems for UAV Real-Time Operation and Data Processing (ITMS2014+: 313011V422).
His research on critical systems, software evolution, testing and management includes a
cooperation with R-SYS, subsidiary of ERA.

In this
presentation…

Engineering green software
Working software
Software evolution
Energy consumption
estimation
Energy-inspired evolution
game (agile development)

Green software engineering is a branch of
software engineering focusing on energy aspects
of software. Please note that software plays here
the role of the process, which one’s energy
consumption can be expressed through the
energy consumption of all hardware parts that
are used in any way by the examined process.
Therefore, when evaluating software greenness,
we always examine the usage load on hardware
parts during software execution time.

Green Software Engineering

Display
Networking (Wi-Fi, Bluetooth), radio
Processor
Memory
Disks
Battery
Sensors

The role of hardware

Operating system (difference between
Windows, Linux, macOS, Android, iOS)
Working software
Computer games
Application systems
Databases

The role of software

Working software is a tested software that
delivers value to the end-user, value that works
well, maybe even better than expected, but never
worse.
Working software is a software which is fully
integrated, tested, and ready to be shipped to
customers or deployed into production.

Working Software (WS)

** WS definitions by Ekaterina Novoseltseva
https://apiumhub.com/tech-blog-barcelona/working-software-go-live-strategy/

* WS is the key measure as defined in the Agile Manifesto
https://agilemanifesto.org/principles.html

The role of
the user

The user “drives” the
software
Needs individual training
(unlike HW/SW)

Does (s)he receive it?
Where?

Repairing bad configuration
is often done by buying a
new device… !

Goals:
Save energy by more efficient hardware
Save energy by optimised/custom software
Save energy by location of hardware

To make it really green:
Develop new working hardware
Develop energy efficient working software
Teach users to save energy when using the software
Make sure the used energy is also green

Green software, green IT

SW Energy Label?
HW/SW system energy label?

Image from Wikipedia

Measuring
energy

consumption

System level
Application level
Component level
Code level

Process level

Incl. improvements

More details can be found in Intellectual output 1 of the project 2017-1-
SK01-KA203-035402: Focusing Education on Composability,
Comprehensibility and Correctness of Working Software

SW-to-SW/HW solutions (servers, IoT)
Uptime/availability prediction
Providing a different evaluation perspective

System level measurement

More details can be found in Intellectual output 1 of the project 2017-1-
SK01-KA203-035402: Focusing Education on Composability,
Comprehensibility and Correctness of Working Software

Application level measurement

0

10

20

30

40

1 20 39 58 77 96 115134153172191210229248267286305324343362381400419438457476495514533552571590

Total power [W]
CPU [W]
Monitor [W]
Disk [W]
Base system [W]

Installing IntelliJ IDEA

More details can be found in Intellectual output 1 of the project 2017-1-
SK01-KA203-035402: Focusing Education on Composability,
Comprehensibility and Correctness of Working Software

Disk [W]

0

0

0

0

1

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 307 325 343 361 379 397 415 433 451 469 487 505 523 541 559 577

Disk [W]

More details can be found in Intellectual output 1 of the project 2017-1-
SK01-KA203-035402: Focusing Education on Composability,
Comprehensibility and Correctness of Working Software

Test oracles
Comparing different versions
The driver of energy (r)evolution

Component level measurement

More details can be found in Intellectual output 2 of the project 2017-1-
SK01-KA203-035402: Focusing Education on Composability,
Comprehensibility and Correctness of Working Software

Which version of an algorithm is consuming less
energy?
Is it more efficient to store objects in an array
than in a list?
How significantly does the length of execution
impact on the consumption measured when
generating file MD5/SHA-n values?

Code level measurement

The energy-
measured

development
game

1. Setup the environment
2. Start the energy monitor
3. Develop (think, code, test, fix) for

15 minutes
4. Have a 5 minutes break (stop

energy usage monitoring, set up
the next one, get a coffee)

5. Finish (for this time) if there is no
further idea

6. Repeat (jump to label 2)
7. Analyse collected data (energy

efficiency of your development
process) inside the team

More details can be found in Intellectual output 1 and 2 of the project
2017-1-SK01-KA203-035402: Focusing Education on Composability,
Comprehensibility and Correctness of Working Software

S/P/E-type software (Lehman, 1980 and later):
Continuing Change
Increasing Complexity
Declining Quality
Feedback System

Agile development is evolutionary development
(WS is P/E-type software — more E-type, less P-
type)

Software Evolution

Lehman, M. M. (1980). "Programs, Life Cycles, and Laws of Software Evolution". Proc. IEEE. 68 (9): 1060–1076.
doi:10.1109/proc.1980.11805

User
Feedback
System

Change of
Problem

Understanding

Continuous
Performance

Testing

Continuing
Change of

Operational
Environment

Energy
Related
ISSUE

The energy-
inspired

evolution
game

1. Setup the environment
2. Start the energy monitor
3. Identify an energy leak, reconstruct

an existing issue
4. Have a 5 minutes break (stop

energy usage monitoring, get a
coffee)

5. Evolve the code based on the
energy leak or issue

6. Finish (for this time) if there is no
further idea

7. Repeat (jump to label 2)
8. Release new version of WS

GSE
The future of

Research:
Unification of principles
Standardisation of
representation of results
Software energy efficiency
(label?)
Sustainable AI

Industry:
Sustainable AI in software
Sustainable autonomous
robots

Academia:
Prepare this future by
educating the people

Liked it? ☺

Csaba.Szabo@tuke.sk

mailto:csaba.Szabo@tuke.sk

The information and views set out in this publication are those of the author(s) and
do not necessarily reflect the official opinion of the European Union. Neither the
European Union institutions and bodies nor any person acting on their behalf may
be held responsible for the use which may be made of the information contained
therein.

This presentation contains parts of Intellectual output 1 and Intellectual output 2
of the ERASMUS+ project No. 2017-1-SK01-KA203-035402: Focusing Education
on Composability, Comprehensibility and Correctness of Working Software.

Disclaimer

