Overview of European Union Guidelines and Regulatory Framework for Drones in Aviation in the context of the introduction of automatic and autonomous flight operations in Urban air mobility

Elham Fakhraian, El-Houssaine Aghezzaf, Silvio Semanjski, Ivana Semanjski
Academic Experience

✓ BSc: Mechanical Engineering

✓ MSc: Energy System Engineering

➢ Studying Ph.D. in: Industrial Engineering and operations research
 Thesis title: Digital twin based certification for smart industry application
The research topics and current project

AURORA’s Unmanned Aerial Vehicles

- 10 kg UAV
- 75 kg UAV
- 600 kg rotorcraft

8 partners in 5 EU states

Aurora demonstration and Potential Locations

sAfe Urban aiR mObility for euRopeAn citizens
Abstract

EU Member States:
drones less than 150kg

European Aviation Safety Agency:
drones more than 150kg

EASA:
drones in all sizes and weights

31 December 2020

EASA AI roadmap

Regulation 2019/945 for technical requirements

Regulation 2019/947 for operations

National Aviation Authorities

European Aviation Safety Agency

OVERVIEW OF EU REGULATION
Drones Operational Categories

Open
- low-risk operations
- Three sub-categories (A1, A2, and A3)
- No operational authorization or declaration required by operator before start of flight
- VLOS, 25kg MTOM, 120m AGL
- Not carry dangerous goods and no dropping of any material
- Not over assemblies of people
- 5 different C-classes for Open category flights

Specific
- Increased risk
- Declaration suffices if Standard Scenario (STS-x)
- STS-01 (VLOS - maximum height 120m and MTOMs 25kg and Size less than 3m)
- STS-02 (BVLOS-maximum height 120m and MTOMs 25kg and Size less than 3m)
- Operational authorization required based on SORA or PDRA
- LUC self-authorization

Certified
- The highest level of risk
- Always need to be certified.
- The UAS operator will need an air operator approval issued by the competent authority, and the remote pilot is required to hold a pilot license.
- The safety approach will be very similar to manned aviation, and almost all the aviation regulations will need to be amended.
- The UAS has a dimension of 3 m or more in the operation involves flying over assemblies of people
- The transport of people
- The transport of dangerous goods if the payload is not in a crash-protected container.
Drones Operational Categories

Open
- low-risk operations
- Three sub-categories (A1, A2, and A3)
- No operational authorization or declaration required by operator before start of flight
- VLOS, 25kg MTOM, 120m AGL
- Not carry dangerous goods and no dropping of any material
- Not over assemblies
- 5 different sub-categories for open category flights

Specific
- Increased risk
- Declaration suffices if Standard Scenario (STS-x)
- STS-01 (VLOS - maximum height 120m and MTOMs 25kg and Size less than 3m)
- STS-02 (BVLOS - maximum height 120m and MTOMs 25kg and Size less than 3m)
- Operational authorization required based on SORA or PDRA
- LUC self-authorization
- Low-risk operations
- Three sub-categories (A1, A2, and A3)
- No operational authorization or declaration required by operator before start of flight
- VLOS, 25kg MTOM, 120m AGL
- Not carry dangerous goods and no dropping of any material
- Not over assemblies

Certified
- The highest level of risk
- Always need to be certified.
- The UAS operator will need an air operator approval issued by the competent authority, and the remote pilot is required to hold a pilot license.
- The safety approach will be very similar to manned aviation, and almost all the regulations will need to be adapted.
- The UAS has a dimension of 3 m or more in the operation involves flying over assemblies of people
- The transport of people
- The transport of dangerous goods if the payload is not in a crash-protected container.
Operational risk assessment for drones in specific category

<table>
<thead>
<tr>
<th>STS#</th>
<th>Edition/ date</th>
<th>UAS characteristics</th>
<th>BVLOS/ VLOS</th>
<th>Overflown area</th>
<th>Maximum range from remote pilot</th>
<th>Maximum height</th>
<th>Airspace</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS-01</td>
<td>June 2020</td>
<td>Bearing a C5 class marking (maximum characteristic dimension of up to 3 m and MTOM of up to 25 kg)</td>
<td>VLOS</td>
<td>Controlled ground area that might be located in a populated area</td>
<td>VLOS</td>
<td>120 m</td>
<td>Controlled or uncontrolled, with low risk of encounter with manned aircraft</td>
</tr>
<tr>
<td>STS-02</td>
<td>June 2020</td>
<td>Bearing a C6 class marking (maximum characteristic dimension of up to 3 m and MTOM of up to 25 kg)</td>
<td>BVLOS</td>
<td>Controlled ground area that is entirely located in a sparsely populated area</td>
<td>2 km with an AO†† 1 km, if no AO</td>
<td>120 m</td>
<td>Controlled or uncontrolled, with low risk of encounter with manned aircraft</td>
</tr>
</tbody>
</table>

List of the predefined risk assessments (PDRA#s)

<table>
<thead>
<tr>
<th>PDRA#</th>
<th>Edition/ date</th>
<th>UAS characteristics</th>
<th>BVLOS/ VLOS</th>
<th>Overflown area</th>
<th>Maximum range from remote pilot</th>
<th>Maximum height</th>
<th>Airspace</th>
<th>AMC# to Article 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDRA-S01</td>
<td>1.0/July 2020</td>
<td>Maximum characteristic dimension of up to 3 m and MTOM of up to 25 kg</td>
<td>VLOS</td>
<td>Controlled ground area that might be located in a populated area</td>
<td>VLOS</td>
<td>120 m</td>
<td>Controlled or uncontrolled, with low risk of encounter with manned aircraft</td>
<td>AMC4</td>
</tr>
<tr>
<td>PDRA-S02</td>
<td>1.0/July 2020</td>
<td>Maximum characteristic dimension of up to 3 m and MTOM of up to 25 kg</td>
<td>BVLOS</td>
<td>Controlled ground area that is entirely located in a sparsely populated area</td>
<td>2 km with an AO 1 km, if no AO</td>
<td>120 m</td>
<td>Controlled or uncontrolled, with low risk of encounter with manned aircraft</td>
<td>AMC5</td>
</tr>
<tr>
<td>PDRA-G01</td>
<td>1.1/July 2020</td>
<td>Maximum characteristic dimension of up to 3 m and typical kinetic energy of up to 34 kJ</td>
<td>BVLOS</td>
<td>Sparsely populated area</td>
<td>If no AO, up to 1 km 150 m (operational volume)</td>
<td>Uncontrolled, with low risk of encounter with manned aircraft</td>
<td>AMC2</td>
<td></td>
</tr>
<tr>
<td>PDRA-G02</td>
<td>1.0/July 2020</td>
<td>Maximum characteristic dimension of up to 3 m and typical kinetic energy of up to 34 kJ</td>
<td>BVLOS</td>
<td>Sparsely populated area</td>
<td>N/a</td>
<td>As established for the reserved airspace</td>
<td>As reserved for the operation</td>
<td>AMC3</td>
</tr>
</tbody>
</table>

** STS:** Standard Technical Specification
** PDRA:** Predefined Risk Assessment
** AMC:** Acceptable Means of Compliance

Other process (e.g. category certified) or new modified ConOps

- **Step 1:** Concept of Operations (ConOps) description
- **Step 2:** Determination of the UAS intrinsic ground risk class (GRC)
- **Step 3:** Final GRC determination
- **Step 4:** Determination of the initial air risk class (ARC)
- **Step 5 (optional):** Application of strategic mitigations to determine the final ARC
- **Step 6:** Tactical Mitigation Performance Requirement (TMPR) and robustness levels
- **Step 7:** Specific Assurance and Integrity Level (SAIL) determination
- **Step 8:** Identification of operational safety objectives (OSOs)
- **Step 9:** Adjacent area / airspace considerations
- **Step 10:** Comprehensive safety position: Are the mitigations and objectives required by the SORA met with a sufficient level of confidence?
Autonomous vs Automatic

Autonomous UAV

With the help of artificial intelligence, autonomous UAS must cope with unforeseen conditions and unpredictable emergencies to conduct a safe flight without the pilot's intervention.

Automatic UAV

Automatic UAS flies on pre-determined routes, and the remote pilot intervenes in case of unforeseen events not programmed in pre-determined operation.
A human-centric approach to AI in aviation

Artificial Intelligence Roadmap
A human-centric approach to AI in aviation

EC Ethical Guidelines
- Accountability
- Technical robustness and safety
- Oversight
- Privacy and data governance
- Non-discrimination and fairness
- Transparency
- Societal and environmental well being

EASA Trustworthy AI building-blocks
- Learning Assurance
- AI Explainability
- AI Safety Risk Mitigation

OVERVIEW OF EU REGULATION
Conclusion

EU Member States: drones less than 150kg

European Aviation Safety Agency: drones more than 150kg

2020

2023

EASA: drones in all sizes and weights

National Aviation Authorities

EASA: drones in all sizes and weights

OVERVIEW OF EU REGULATION
Thank you for your attention!

Elham Fakhraian
Elham.Fakhraian@ugent.be

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007134.