

Safe urban air mobility for European citizens

Title:

Overview of European Union Guidelines and Regulatory Framework for Drones in Aviation in the context of the introduction of automatic and autonomous flight operations in Urban air mobility

Authors:

Presenter:

Elham Fakhraian, El-Houssaine Aghezzaf, Silvio Semanjski, Ivana Semanjski

Elham Fakhraian

Industrial Systems Engineering and Product Design, Ghent University, Industrial Systems Engineering (ISyE), Flanders Make, Ghent, Belgium. Elham.fakhraian@ugent.be

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007134.

Academic Experience

✓ BSc: Mechanical Engineering

✓ MSc: Energy System Engineering

Studying Ph.D. in: Industrial Engineering and operations research Thesis title: Digital twin based certification for smart industry application

The research topics and current project

GHENT UNIVERSITY

Drones Operational Categories

Open

- Iow-risk operations
- Three sub-categories (A1, A2, and A3)
- No operational authorization or declaration required by operator before start of flight
- VLOS, 25kg MTOM, 120m AGL
- Not carry dangerous goods and no dropping of any material
- Not over assemblies of people
- 5 different C-classes for Open category flights

Specific

- Increased risk
- Declaration suffices if Standard Scenario (STS-x)
- STS-01 (VLOS maximum height 120m and MTOMs 25kg and Size less than 3m)
- STS-02 (BVLOS-maximum height 120m and MTOMs 25kg and Size less than 3m)
- Operational authorization required based on SORA or PDRA
- LUC self-authorization

Certified

- The highest level of risk
- Always need to be certified.
- The UAS operator will need an air operator approval issued by the competent authority, and the remote pilot is required to hold a pilot license.
- The safety approach will be very similar to manned aviation, and almost all the aviation regulations will need to be amended.
- The UAS has a dimension of 3 m or more in the operation involves flying over assemblies of people
- The transport of people
- The transport of dangerous goods if the payload is not in a crash-protected container.

Drones Operational Categories

Open

- low-risk operations
- Three sub-categories (A1, A2, and A3)
- No operational authorization or declaration required by operator before start of flight
- VLOS, 25kg MTOM, 120m AGL
- Not carry dangerous goods d no dropping of any material
- Not over assemblie

INIVERSITY

fliab

Automated flights 5 different pen category

Specific

- Increased risk
- Declaration suffices if Standard Scenario (STS-x)
- STS-01 (VLOS maximum height 120m and MTOMs 25kg and Size less than 3m)
- STS-02 (BVLOS-maximum her 20m

BVLOS and Autonomous flights based

Certified

- The highest level of risk
- Always need to be certified.
- The UAS operator will need an air operator approval issued by the competent authority, and the remote pilot is required to hold a pilot license.
- The safety approach will be very similar to Air taxi and cargo over dense manned aviation, and almost all the regulations will need to be an The UAS has a dime n the operation inve people

t of dangerous goods if the payload is nd a crash-protected container.

Operational risk assessment for drones in specific category

ard s)	STS#	Edition/ date	UAS characteristics	BVLOS/ VLOS ^{**}		Maximum ra from remote pilot	nge Maximum height	Airspace			Step 0: Pre-application evaluation
stand: s (STS	STS-01	June 2020	Bearing a C5 class marking (maximum characteristic dimension of up to 3 m and MTOM [*] of up to 25 kg)	1	Controlled ground area that might be located in a populated area	VLOS	120 m	Controlled or un with low risk of with manned aircr	encounter	t (SORA)	Step 1: Concept of Operations (ConOps) description Step 2: Determination of the UAS intrinsic ground risk class (GRC)
List of the scenarios	STS-02	June 2020	Bearing a C6 class marking (maximum characteristic dimension of up to 3 m and MTOM of up to 25 kg)	:	0	2 km with an AO km, if no AO	[™] 1 120 m	Controlled or un with low risk of with manned aircr	encounter	ssessment	Step 3: Final GRC determination O Is the GRC less than or equal to 7? YES
	PDRA#	Edition/ date	UAS characteristics	BVLOS/ VLOS	Overflown area	Maximum range from remote pilot	Maximum height	-	MC# ^{****} to Article 11	Risk As	Step 4: Determination of the initial air risk class (ARC) Step 5 (optional): Application of strategic mitigations to determine the final ARC
List of the predefined risk assessments (PDRAs)	PDRA- S01	1.0/July 2020	Maximum characterist dimension of up to 3 m ar MTOM of up to 25 kg		Controlled ground area that might be located in a populated area	d VLOS	120 m	Controlled or A uncontrolled, with low risk of encounter with manned aircraft	MC4	Specific Operations R	Itel mar ARC Step 6: Tactical Mitigation Performance Requirement (TMPR) and robustness levels Step 7: Specific Assurance and Integrity Level (SAIL) determination
	PDRA- S02	1.0/July 2020	Maximum characterist dimension of up to 3 m ar MTOM of up to 25 kg		Controlled ground area that is entirel located in a sparsel populated area	y AO	120 m	Controlled or A uncontrolled, with low risk of encounter with manned aircraft	MC5		Step 8: Identification of operational safety objectives (OSOs) Step 9: Adjacent area / airspace considerations
	PDRA- G01	1.1/July 2020 1.0/July	Maximum characterist dimension of up to 3 m ar typical kinetic energy of u to 34 kJ Maximum characterist	id Ip	Sparsely populate area Sparsely populate	to 1 km	150 m (operational volume) As established	Uncontrolled, A with low risk of encounter with manned aircraft	MC2	Other process category certif	YES
	PDRA- G02	2020 TakeOff Mass	dimension of up to 3 m ar typical kinetic energy of u to 34 kJ ** Beyond Visual Line of Sight /	id Ip	area		for the reserved airspace eptable Means of Com	the operation		or new modi ConOps	

Autonomous UAV

With the help of artificial intelligence, autonomous UAS must cope with unforeseen conditions and unpredictable emergencies to conduct a safe flight without the pilot's intervention.

Automatic UAS flies on pre-determined routes, and the remote pilot intervenes in case of unforeseen events not programmed in predetermined operation.

A human-centric approach to AI in aviation

GHENT UNIVERSITY

Thank you for your attention!

Elham Fakhraian

Elham.Fakhraian@ugent.be

http://aurora-uam.eu/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007134.