Verification Objectives for Cybersecurity and Safety

— Friend or Foe?

Daniel Kastner
AbsIint GmbH, 2022
kaestner@absint.com

€l Absint

Daniel Kastner

= 1993-1997: Study of Computer Science and Business Economics at
Saarland University, Saarbricken, Germany

= 1997: VDI Saar Master’s Thesis Award

= 1997-2000: Graduate College at Saarland University

= 1998: Co-Founder of Absint GmbH

= 2000: PhD on Code Optimization for Embedded Processors
= 2000-2003: Research Associate at Saarland University & Senior Software Engineer at Absint
= 2001: SaarLB Science Award

= Since 2003: CTO of AbsInt

= Since 2014: Member of IEC-61508 Formal Methods Project Team

= Since 2017: Member of MISRA C Working Group

= Since 2020: Member of MISRA SQM Working Group

= Best paper awards: EDCC 2015, ERTS 2016, CYBER 2017, ERTS 2020, ERTS 2022

Cybersecurity and Safety - Friend or Foe?

€l Absint

= Research topics:

Daniel Kastner

embedded systems = compiler technology
functional safety = coding guidelines
cybersecurity = software quality
static program analysis = formal methods

= Selected publications (2019-2022)

Cybersecurity and Safety - Friend or Foe?

D. Kastner, L. Mauborgne, S. Wilhelm, C. Mallon, C. Ferdinand. Static Data and Control Coupling Analysis. In ERTS 2022: Embedded Real Time Software and
Systems, 11th European Congress, Jun 2022, Toulouse, France. Available at the HAL open archive, URL: https://hal.archives-ouvertes.fr/hal-03694546

D. Kastner, M. Pister, C. Ferdinand. Obtaining DO-178C Certification Credits by Static Program Analysis (Best Paper Award). In ERTS 2022: Embedded Real
Time Software and Systems, 11th European Congress, Jun 2022, Toulouse, France. Available at the HAL open archive, URL: https://hal.archives-
ouvertes.fr/hal-03694553

R. Wilhelm, M. Pister, G. Gebhard, and D. Kastner. Testing Implementation Soundness of a WCET Analysis Tool. In Jian-Jia Chen, Ed., A Journey of
Embedded and Cyber-Physical Systems, Springer Open Access, 2021. ISBN 978-3-030-47487-4 (eBook).

D. Kastner, L. Mauborgne, S. Wilhelm, C. Ferdinand. High-Precision Sound Analysis to Find Safety and Cybersecurity Defects (Best Paper Award). In ERTS
2020: Embedded Real Time Software and Systems, 10th European Congress, Jan 2020, Toulouse, France.

D. Kastner, L. Mauborgne, C. Ferdinand, H. Theiling. Detecting Spectre Vulnerabilities by Sound Static Analysis. In CYBER 2019: Proceedings of the Fourth
International Conference on Cyber-Technologies and Cyber-Systems, Porto, 2019.

D. Kastner, B. Schmidt, M. Schlund, L. Mauborgne et al. Analyze this! Sound static analysis for integration verification of large-scale automotive software.
SAE Technical Paper 2019-01-1246, 2019.

D. Kastner, J. Barrho, U. Wiinsche, M. Schlickling, B. Schommer et al. CompCert: Practical Experience on Integrating and Qualifying a Formally Verified
Optimizing Compiler. In ERTS 2018 — Embedded Real Time Software and Systems, January 2018, Toulouse, France. <hal-01643290>

€l Absint

Embedded System Trends — Safety and Security

= Snowballing software complexity (2016: >100 million LOC per car [1])

= More and more safety-critical functionality in software
= Autonomy: Highly automatic driving, Unmanned Aerial Vehicles, robotics, smart medical devices, ...

" |ncreasing connectivity in safety-critical systems

= Cloud-based services = Over-the-air updates

= C2X communication = Smart mobility / grid / ...

= Increasing frequency and attack scale of cybersecurity issues
= 2015 FDA blacklisting Hospira Symbiq infusion pump (Wifi tampering)
= 2015 General Motors OnStar Remotelink App
= 2016 Jeep Cherokee hack (Fiat Chrysler Uconnect)
= 2017 CAN Bus Standard Vulnerability (ICS-ALERT-17-209-01)

= Increasing risk of critical software defects

[1] Ondrej Burkacky, Johannes Deichmann, Georg Doll, Christian Knochenhauer. Rethinking car software and electronics architecture.
Report McKinsey & Company, Feb. 2018.

Cybersecurity and Safety - Friend or Foe?

€l Absint

A Security Issue ?

void heartbleed bug(char *input buffer, unsigned int input length) {
char *mybuffer = (char*) malloc(input length);
memcpy (mybuffer,input buffer,input length);

Qi Absint Advanced Analyzer for C - Astrée - Heartbleed (1) - O X

Project Analysis Editors Edit Tools Help u H eda rt b | ee d b u g (2 O 1 4)

BEEE # 4 # ¢ H
a D o Um v o = Security bug in OpenSSL

0 Welcome

Configuration

= Passwords, social insurance numbers,
| patient records, ... leaked

O Preprocessor
5Parser
/‘.' Analyzer
A Annotations
Results I
@ ommier = Millions of people affected
all grapl
/. Reports

JUmSmhmi = Estimated cost >S500M*

Preprocessed Original [call#heartbleed_bug@14 at hb.c:14.0-18.1
|- ALARM (A): invalid size for dynamic allocation or reallocation: negative or too large size: [0, 4294967295] at hb.c:16.28-79]

memcpy (mybuffer, input_buffer,input_length);

WO U B WN
~

#
b # clibc .
T - ke Underlvi ded f

(s o v | Moreters | 4 of 4 ficinge vie " nderlying code detrects are
Errors: 0 © Messages filtered in Result view (type Alarms)

Code locations with alarms: Order Type Category Classification Comment a e l y— l e I eva r l I I
S I .
Run-time errors: 4 - Alarm (A) [Invalid argument in dynamic memory allocation, free or resize | true -‘

Flow anomalies: 0
P Alarm (A) Possible overflow upon dereference true 1

Rule violations: 0

= Defects detectable by

A & ow o~ IS

Memory locations with alarms: P Alarm (A) Dereference of null or invalid painter true !
Data races: 0
e - P Alarm (A) Invalid memcpy/bzero/access/trash true ! M | .
e static analysis
Duration: s >
[8K] A Output | W Findings 4 Notreached 4 Dataflow 4 Watch A Search v

*https://en.wikipedia.org/wiki/Heartbleed (retrieved April 2017)

Cybersecurity and Safety - Friend or Foe?

€l Absint

I
Dependability

" Functional Safety
= Absence of unreasonable risk to life and property caused by malfunctioning behavior of the system

= Security
= Absence of harm caused by malicious (mis-)usage of the system

= Reliability
= Probability with which the system performs its required functions under specified conditions for a
specified period of time
= Availability
= Probability with which the system operates at a random time within its life range

= Safety of the Intended Functionality — SOTIF

= Absence of unreasonable risk due to hazards resulting from functional insufficiencies of the intended
functionality

Cybersecurity and Safety - Friend or Foe?

€l Absint

Functional Safety

= Demonstration of functional correctness REQUIRED BY
= Functional requirements are satisfied DO-1¢8B/ DO-178C/
> Automated and/or model-based testing I1S0-26262, EN-50128,
» Formal techniques: model checking, theorem proving IEC-61508

= Satisfaction of safety-relevant quality requirements REQUIRED BY
= No runtime errors (e.g. division by zero, overflow, “9'1‘7353.{ “‘“'1_78(3/

invalid pointer access, out-of-bounds array access) “——— Security-relevant lbﬂ‘!’%‘ f(’z’ EN-50123,
= Resource usage: SO 21434 ... IEC-61508
= Timing requirements (e.g. WCET, WCRT) /

= Memory requirements (e.g. no stack overflow)

= Robustness / freedom of interference (e.g. no corruption of content,
incorrect synchronization, illegal read/write accesses) g”?t'z‘éEriorlAFTalysAs/l s/
ata ontro OW Analysis

= Compliance with the software architecture, data and control coupling Data and Control Coupling

» Insufficient: Tests & Measurements
= No specific test cases, unclear test end criteria, no full coverage possible

» Static analysis
= Formal technique (sound): Abstract Interpretation — no defect missed

Cybersecurity and Safety - Friend or Foe?

Code Guideline Checking

e

Code Metrics
WCET Analysis

6 G G

Stack Usage Analysis

€l Absint

————— 8
(Information-/Cyber-) Security Aspects

= Confidentiality
= |Information shall not be disclosed to unauthorized entities
= safety-relevant

= |ntegrity
= Data shall not be modified in an unauthorized or undetected way
= safety-relevant
= Availability
= Data is accessible and usable upon demand
= safety-relevant

+ Safety

In some cases: not safe = not secure
In some cases: not secure = not safe

Cybersecurity and Safety - Friend or Foe?

€l Absint

I —.
Relation between Safety and Cybersecurity

Cybersecurity-Critical

Systems
System System
Safety Cybersecurity
Safety-Critical Eng.|r1.e.er|ng Englne.e.rl.ng
Activities Activities

Systems

Cybersecurity and Safety - Friend or Foe?

€l Absint

Scope of this Talk

Communication

Source: https://en.wikipedia.org/wiki/Information_security

®
Open Discussion: Cyber-systems Protection by Design h Absint

Cybersecurity at the Source Code Level

= Many security vulnerabilities due to undefined / unspecified behaviors in the

programming language semantics:
= buffer overflows, invalid pointer accesses, uninitialized memory accesses, data races, etc.
= Consequences: denial-of-service / code injection / data breach
= Absence can be shown with sound static analysis!

= Beyond runtime errors: C Security IS more Comp|exl
= Coding guidelines = Safety: property of single
= Data and Control Flow analysis execution traces
= Taint analysis (data safety, impact analysis, ...) = Security: property of sets of
= Side channel attacks execution traces
" Spectre (hyperproperties)

Cybersecurity and Safety - Friend or Foe?

€l Absint

SSP — Normative Landscape
A Functional Safety: DO-178B/C, ISO 26262, IEC 61508, EN 50128, EN 62304, ...

g Security: SAE-J3061, ISO/SAE 21434, IEC TR 63069, IEC 62443,
1ISO 15408, MDCG 2019-16, ...

Performance / System Safety: ISO PAS 21448 DIS (SOTIF)

UL4600 (Autonomous products)
ISO NWIP TS5083 (Automated road driving systems)

(Product Safety: IATF 16949, Legislation (EU General Product Safety Directive,
FMVSS, Type Approval))

Cybersecurity and Safety - Friend or Foe?

€l Absint

Bugs Happen

Size of SW projects | Average Defect Defect Removal
in FP Potential Efficiency

100 3,00 98%
10.000 6,25 93%
1.000.000 8,25 86%

1 FP (Function point) ~ 160 LOC (C language) oﬁi”fé'sﬁs‘?ﬂiim
64 LOC (Ada) I
32 LOC (C++)

Total potential defects correlated with defect removal efficiency for:
10.000 FP ~ 1.6 MLOC C-Code:
= 62.500 defects

= ~4.375 defects delivered to customer

Tables Tab. 6.9 / Tab. 6.10 / Tab. 6.11 / Tab. 6.12 (Numbers for Systems & Embedded Software Projects) from:
[4] Capers Jones, Olivier Bonsignour. The Economics of Software Quality. Addison-Wesley Professional; 2011.

®
Cybersecurity and Safety - Friend or Foe? h Absint

Cost of Poor Software Quality

= Cost of poor quality software in US in 2018:
~2.84 trillion USD Quality Software

A 2018 Report

The Cost of Poor

= ,The key strategy for reducing the cost
of poor software quality is to find and
fix problems and deficiencies 37.46% CIS

. osses from
as close to the source as possible, SW filures
or better yet, prevent them e

problems

from happening in the first place.”

Troubled/
cancelled
projects

6.01%

16.87%
18.22% Finding/fixing
Technical debt defects

Areas of cost

[1] Herb Krasner. The Cost of Poor-Quality Software in the US, CISQ, 2018.

Cybersecurity and Safety - Friend or Foe?

€l Absint

Costs of Software Defects

= Speculative table on costs of

software defects, considering, e.g.,
= Toyota brake problem

Table 6.20. Approximate U.S. Annual
Costs for Software Defects to Clients

Systems & Total Annual
= NASA Mariner 1 failure Cost per MIS/Web Embedded Annual Cost of
Incident Software Software Incidents Incidents

= NASA Polar Lander failure > $1,000,000,000 5 2 7 $7,000,000,000
n Thera C_25 radiation pOiSOnlng > $100,000,000 50 15 65 $6,500,000,000
. . > $10,000,000 100 50 150 $1,500,000,000
= Ariane-5 explosion > $1,000,000 200 75 275 $275,000,000
"] Patriot miss”e ta rgeting error > $100,000 1.000 250 1.250 $125.000,000
- Chinook hellcopter engl ne fai|u re > $10,000 2,000 1,000 3,000 $30,000,000
> $1,000 6,000 5,000 11,000 $16,000,000
= F-22 Raptor flight control errors >$100 20,000 10,000 30,000 $3,000,000
TOTAL 29,355 16,392 45,747 $15.,449.000,000

= Shutdown of Yorktown shipboard software

= Some software defects can be very expensive

[4] Capers Jones, Olivier Bonsignour. The Economics of Software Quality. Addison-Wesley Professional; 2011.

Cybersecurity and Safety - Friend or Foe?

€l Absint

Effectiveness of Software Defect Prevention Methods

= Total of 65 methods estimated with static analysis ranked 7

(Reductions in defects per function point for 1,000 function points)

Defects Defect
Defect Potentials Potentials
Defect Prevention Methods Prevention without with

(In Order of Effectiveness) Efficiency Prevention Prevention
1 Reuse (certified sources) 85.00% 5.00 0.75
2 Inspections (formal) 60.00% 5.00 2.00
3 Quality Function Deployment (QFD) 57.50% 5.00 2.13
4 Prototyping—functional 52.00% 5.00 2.40
5 Risk analysis (automated) 48.00% 5.00 2.60
6 PSP/TSP 44.00% 5.00 2.80
7 Static analysis of source code 44.00% 5.00 2.80
8 Root cause analysis 41.00% 5.00 2.95
9 Quality in all status reports 40.00% 5.00 3.00
10 Joint Application Design (JAD) 40.00% 5.00 3.00
11 Test-driven development 37.00% 5.00 3.15
12 CMMI 5 37.00% 5.00 3.15

[4] Capers Jones, Olivier Bonsignour. The Economics of Software Quality. Addison-Wesley Professional; 2011.

Cybersecurity and Safety - Friend or Foe?

€l Absint

Software Complexity and Defect Risk

= Defect potential increases
with complexity of SW

= Defect removal efficiency decreases
with complexity of SW

Acceptable Level of Risk

= Required hardware complexity increases with

complexity of SW

= Non-deterministic interference effects on
high-end multicore architectures

Post-Release Defect Risk

Code Complexity

= Requires appropriate development processes and
usage of highly efficient and powerful software tools

Capers Jones, Olivier Bonsignour. The Economics of Software Quality. Addison-Wesley Professional; 2011.

®
Open Discussion: Cyber-systems Protection by Design h Absint

1ISO 26262 — Modelling and Coding Guidelines

Table 1 — Topics to be covered by modelling and coding guidelines

Topics ASIL

A B C D
la |Enforcement of low complexitya ++ ++ ++ ++
1b |Use of language subsetsb ++ 4 ++ Tt
1c |Enforcement of strong typing¢ ++ ++ ++ e+
1d |Use of defensive implementation techniquesd + + ++ ++
le |Use of well-trusted design principlese + + ++ ++
1f |Use of unambiguous graphical representation + ++ ++ ++
1g |Use of style guides + + + ++
1h |Use of naming conventions ++ ++ 4 T+
1i |Concurrency aspectst + + + +

a Anappropriate compromise of this topic with other requirements of this document may be required.
b The objectives of topic 1b include:

— Exclusion of ambiguously-defined language constructs which may be interpreted differently by different modellers,
programmers, code generators or compilers.

— Exclusion of language constructs which from experience easily lead to mistakes, for example assignments in
conditions or identical naming of local and global variables.

— Exclusion of language constructs which could result in unhandled run-time errors.

¢ The objective of topic 1cis to impose principles of strong typing where these are not inherent in the language.

[Concurrency of processes or tasks is not limited to executing software in a multi-core or multi-processor runtime
environment.

Excerpt from: Sec. 5.4.3 — General topics for the product development at the software level,
ISO 26262-6 Road vehicles - Functional safety — Part 6: Product development: Software Level, 2018.

Cybersecurity and Safety - Friend or Foe?

€l Absint

1ISO 26262 — SW Unit Design and Implementation

Table 6 — Design principles for software unit design and implementation

Principle ASIL

A B C D
la |One entry and one exit point in sub-programmes and functionsa ++ ++ ++ ++
1b |No dynamic objects or variables, or else online test during their creationa - ++ ++ ++
1c |Initialization of variables ++ ++ ++ ++
1d |No multiple use of variable namesa ++ 4 ++ +
le |Avoid global variables or else justify their usagea + + ++ ++
1f |Restricted use of pointersa + ++ ++ ++
1g |No implicit type conversions2 + ++ ++ 1t
1h |No hidden data flow or control flow + ++ +t ++
1i | No unconditional jumpsa ++ + e ++
1j |Norecursions + + ++ +
a Principles 1a, 1b, 1d, 1le, 1f, 1g and 1i may not be applicable for graphical modelling notations used in model-based
development.

NOTE For the C language, MISRA CI3] covers many of the principles listed in Table 8.

Excerpt from:
ISO 26262-6 Road vehicles - Functional safety — Part 6: Product development: Software Level, 2018.

Cybersecurity and Safety - Friend or Foe?

€l Absint

Sources of Security Vulnerabilities in C

= Many security vulnerabilities due to undefined / QUUE Sommon Meskness Enumeration

TBipes

unspecified behaviors in the —=

Home About CWE List Scoring ing Guid C i New

prOgrammlng Ianguage Sema nt|CS: CWE-121: Stack-based Buffer Overflow

Weakness ID: 121
Abstraction: Variant

Structure: Simple
zed information: Conceptual | Operational) _ Mapping-Friendly)

= Stack-based buffer overflows

)]
—_—

= Heap-based buffer overflows

A stack-based buffer overflow condition is a condition where the buffer being overwritten is

allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

= Invalid pointer accesses (null, dangling, ...) ——

Stack Overflow: "Stack Overflow" is often used to mean the same thing as stack-based
buffer overflow, however it is also used on occasion to mean stack

- . o, . . exhaustion, usually a result from an excessively recursive function call.
U n I n It I a I Ized m e m O ry a Ccesse S Due to the ambiguity of the term, use of stack overflow to describe either
¥ Relationships
= |nteger errors

circumstance is discouraged.
) ¥ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name

- Format String VUInerabiIitieS g::::g; 3 ;g; mocationl\ﬂerﬁd of Buffer
= Concurrency defects (TOCTOU races, ...) oo Conssauences

Scope Impact Likelihood

Technical Impact: Modify Memory; DoS: Crash, Exit, or Restart; DoS: Resource
Consumption (CPU); DoS: Resource Consumption (Memory)
Availability Buffer overflows generally lead to crashes. Other attacks leading
to lack of availability are possible, including putting the program
- . - . . into an infinite loop.
= Consequences: denial-of-service, code injection | SR o s o
.)) Integrity Bypass Protection Mechanism
Confidentiality
Availability Buffer overflows often can be used to execute arbitrary code,

d a ta b re a C h Access Control Which is usually outside the scope of a program's implicit security
policy.

Cybersecurity and Safety - Friend or Foe?

€l Absint

ISO 21434 — Road vehicles — Cybersecurity Engineering

[RQ-10-04] If design, modelling or programming notations or languages are used for the cybersecurity
specifications or their implementation, the following shall be considered when selecting such a notation
or language:

a) anunambiguous and comprehensible definition in both syntax and semantics;
b) support for achievement of modularity, abstraction and encapsulation;

c) support for the use of structured constructs;

d) support for the use of secure design and implementation techniques;

e) ability to integrate already existing components; and
EXAMPLE 3 Library, framework, software component written in another language.
f) resilience of the language against vulnerabilities due to its improper use.
EXAMPLE 4 Resilience against buffer overflows.

NOTE 6 For software development, implementation includes coding using programming languages.

Cybersecurity and Safety - Friend or Foe?

€l Absint

ISO 21434 — Road vehicles — Cybersecurity Engineering

[RQ-10-05] Criteria (see [RQ-10-04]) for suitable design, modelling or programming languages for
cybersecurity that are not addressed by the language itself shall be covered by design, modelling and
coding guidelines, or by the development environment.

EXAMPLES5 Use of MISRA C:2012 [1Z] or CERT C [18] for secure coding in the “C” programming language.
EXAMPLE 6 Criteria for suitable design, modelling and programming languages:

— use of language subsets;

— enforcement of strong typing; and/or

— use of defensive implementation techniques.

Cybersecurity and Safety - Friend or Foe?

€l Absint

1ISO 26262 — SW Unit Design and Implementation

8.4.5 Design principles for software unit design and implementation at the source code level as listed
in Table 6 shall be applied to achieve the following properties:

a)

b)
c)
d)
e)
f)

g)
h)

Cybersecurity and Safety - Friend or Foe?

correct order of execution of sub-programmes and functions within the software units, based on
the software architectural design;

consistency of the interfaces between the software units;

correctness of data flow and control flow between and within the software units;
simplicity;

readability and comprehensibility;

robustness;

EXAMPLE Methods to prevent implausible values, execution errors, division by zero, and errors in the
data flow and control flow.

suitability for software modification; and

verifiability.

Excerpt from:
ISO 26262-6 Road vehicles - Functional safety — Part 6: Product development: Software Level, 2018.

€l Absint

ISO 26262 — Methods for Software Unit Verification

Table 7 — Methods for software unit verification

ASIL
Methods

A B C D
la |Walk-througha ++ + 0 0
1b |Pair-programminga + + + +
1c |Inspectiona + ++ ++ ++
1d |Semi-formal verification + + ++ ++
le |Formalverification 0 0 + +
1f |Control flow analysisb, ¢ + + ++ ++
1g |Data flow analysisb. ¢ + + ++ ++
1h |Static code analysisd ++ ++ ++ ++
1i |Static analyses based on abstract interpretation¢ + + + +
1j |Requirements-based testf ++ ++ ++ ++
1k |Interface testg ++ ++ ++ ++
11 |Faultinjection testh + + + ++
1m |Resource usage evaluationi + + + ++
1n |Back-to-back comparison test between model and code, if applicablel + + ++ ++
a For model-based development these methods are applied at the model level, if evidence is available that justifies
confidence in the code generator used.
b Methods 1f and 1g can be applied at the source code level. These methods are applicable both to manual code
development and to model-based development.
¢ Methods 1fand 1g can be part of methods 1e, 1h or 1i.
d Static analyses are a collective term which includes analysis such as searching the source code text or the model for
patterns matching known faults or compliance with modelling or coding guidelines.
e Static analyses based on abstract interpretation are a collective term for extended static analysis which includes
analysis such as extending the compiler parse tree by adding semantic information which can be checked against violation
of defined rules (e.g. data-type problems, uninitialized variables), control-flow graph generation and data-flow analysis
(e.g. to capture faults related to race conditions and deadlocks, pointer misuses) or even meta compilation and abstract
code or model interpretation.

Excerpt from:
ISO 26262-6 Road vehicles - Functional safety — Part 6: Product development: Software Level, 2018.

®
Cybersecurity and Safety - Friend or Foe? “ Absint

1ISO 262626 — Methods for Software Integration Verification

Table 10 — Methods for verification of software integration

Methods ASIL

A B C D
la |Requirements-based testa ++ ++ 4 ++
1b |Interface test ++ ++ 4+ +4+
1c | Faultinjection testb + + ++ ++
1d |Resource usage evaluatione. d ++ ++ ++ ++
le |Back-to-back comparison test between model and code, if applicablee + + ++ ++
1f |Verification of the control flow and data flow + + ++ ++
1g |Static code analysisf ++ ++ ++ ++
1h | Static analyses based on abstract interpretationg + + + +

a The software requirements allocated to the architectural elements are the basis for this requirements-based test.

b In the context of software integration testing, fault injection test means to introduce faults into the software for the
purposes described in 10.4.3 and in particular to test the correctness of hardware-software interface related to safety
mechanisms. This includes injection of arbitrary faults in order to test safety mechanisms (e.g. by corrupting software
interfaces). Fault injection can also be used to verify freedom from interference.

¢ To ensure the fulfilment of requirements influenced by the hardware architectural design with sufficient tolerance,
properties such as average and maximum processor performance, minimum or maximum execution times, storage usage
(e.g. RAM for stack and heap, ROM for programme and data) and the bandwidth of communication links (e.g. data buses)
have to be determined.

d Some aspects of the resource usage evaluation can only be performed properly when the software integration tests are
executed on the target environment or if the emulator for the target processor adequately supports resource usage tests.

e This method requires a model that can simulate the functionality of the software components. Here, the model and
code are stimulated in the same way and results compared with each other.

f Static analyses are a collective term which includes analysis such as architectural analyses, analyses of resource
consumption and searching the source code text or the model for patterns matching known faults or compliance with
modelling or coding guidelines, if not already verified at the unit level.

g Static analyses based on abstract interpretation are a collective term for extended static analysis which also includes
analysis such as extending the compiler parse tree by adding semantic information which can be checked against violation
of defined rules (e.g. data-type problems, uninitialized variables), control-flow graph generation and data-flow analysis
(e.g. to capture faults related to race conditions and deadlocks, pointer misuses) or even meta compilation and abstract
code or model interpretation, if not already verified at the unit level.

Excerpt from:
ISO 26262-6 Road vehicles - Functional safety — Part 6: Product development: Software Level, 2018.

®
Cybersecurity and Safety - Friend or Foe? h Absint

ISO 21434 — Road vehicles — Cybersecurity Engineering

[RQ-10-10] The integration and verification activities of [RQ-10-09] shall be specified considering:

a)
b)

c)

d)

the defined cybersecurity specifications;
configurations intended for series production, if applicable;

sufficient capability to support the functionality specified in the defined cybersecurity
specifications; and

conformity with the modelling, design and coding guidelines of [RQ-10-05], if applicable.

NOTE 1 This can include the vehicle integration and verification.

NOTE 2 Methods for verification can include:

Cybersecurity and Safety - Friend or Foe?

requirements-based test;

interface test;

resource usage evaluation;

verification of the control flow and data flow;
dynamic analysis; and/or

static analysis.

€l Absint

Example Safety/Security Goal Conflicts

= Car locking
= Safety: Unlock car in case of accident.
= Security: Lock car when engine not running for some time.

= Update policy
= Safety: Updates only available after full integration verification
= Security: Provide quick patches to react to cybersecurity threads

= Connectivity policy
= Safety: Enforce minimal connectivity
= Security: Enable over-the-air updates for quick reactivity

Cybersecurity and Safety - Friend or Foe?

€l Absint

Aligning Safety and Security Processes

= Safety and cybersecurity processes have to be aligned.

= Example for concept phase:

= HARA (Hazard and Risk Analysis) = TARA (Thread and Risk Analysis)
= Potential item hazards = Potential item threats
= Potential vehicle level hazards = Potential vehicle level threats
= Potential worst-case hazard = Potential worst-case thread
scenario scenario
= ASIL determination Touching points = CAL determination
= Severity = Severity
= Exposure = Attack likelihood
= Controllability = Controllability
= Safety Goals = Cybersecurity Goals

€l Absint

Cybersecurity and Safety - Friend or Foe?

Coding Guidelines

= “Safety”
= MISRA C:2004, MISRA C:2012, MISRA C++:2008

= Guidelines to define a language subset to avoid or reduce the risk for programming errors

= “Security”

= |SO/IECTS 17961:2013 "C Secure"
= MISRA C:2012 Addendum 2 gives mapping to C Secure

= SEI CERT C Coding Standard / CERT C++

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
= Rules to facilitate developing safe, reliable, and secure systems

= MISRA C:2012 Addendum 3 gives mapping to CERT C
= MITRE Common Weakness Enumeration CWE

https://cwe.mitre.org

Cybersecurity and Safety - Friend or Foe?

€l Absint

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://cwe.mitre.org/

Coding Guidelines — Safety vs. Security

MISRA C:2012 vs. ISO/IEC TS 17961:2013
= Only 4 "CSecure" rules not addressed by MISRA C:2012
= Those have been added with MISRA C:2012 Amendment 1

SEI CERT C — Example Rules:

= EXP.33 Do not read uninitialized memory

= EXP.34 Do not dereference null pointers

= |NT.32 Ensure that operations on signed integers do not result in overflow

= |NT.33 Ensure that division and reminder operations do not result in divide-by-zero errors
» Run-time errors due to undefined/unspecified behaviors

= Strong overlap with safety-oriented rule sets (cf. MISRA C Addendum 3)

= Common Weakness Enumeration CWE
= Similar

= Adaptive Autosar C++14 Coding Guidelines, ...

Cybersecurity and Safety - Friend or Foe?

€l Absint

MISRA C:2012 Guideline Classification

= Directives (17)

= No fully automatic compliance check on source code
= Criteria not precisely defined

= Additional activities needed
(checking external documentation, ...)

= Example (Dir 3.1.):
All code shall be traceable to documented requirements

= Rules (156)

= Automatic compliance check possible
= Scope: system (49) vs. single-translation-unit (107)
= Algorithmic class: undecidable vs. decidable

Cybersecurity and Safety - Friend or Foe?

€l Absint

MISRA C Guideline Classification

= Decidable rules (119)

" syntactical property
= Example —Rule 2.7.
There should be no unused parameters in functions.

= Undecidable rules (37)

= semantical property = absence of defect

= Example —Rule 9.1:
The value of an object with automatic storage duration shall not be read before it
has been set

Cybersecurity and Safety - Friend or Foe?

€l Absint

Entscheidungsproblem & Halting Problem

= Decision problem: find an algorithm to determine for every possible
parameter instance whether a certain parametric statement is true or false
in a given axiomatic system [Hilbert 1928].

= Halting Problem: Given some algorithm and some input to the algorithm
(both together are the parameter) does the algorithm halt when run on

the given input?

= The Halting Problem is undecidable [Turing 1937]

= A Turing Machine that decides whether some (other) Turing Machine halts
when run on an input cannot exist.

= Rice Theorem: All non-trivial semantic statements about Turing machines
(or programs) are undecidable.

Cybersecurity and Safety - Friend or Foe?

€l Absint

The Halting Problem

= CisaTuring-complete programming language, i.e., any possible Turing
machine can be implemented as a C program.

= Does this program terminate?

int Collatz (int c)
{
int n=c;
while (1 !'= n) {
if (0 == n%2) n = n/2;
else n = (3*n)+1;

}

return 0O;

}

Cybersecurity and Safety - Friend or Foe?

€l Absint

Undecidables Rules in MISRA C:2012 — Examples

= Dir 4.7 (required, undecidable, system)
If a function returns error information, then that error information shall be tested.

= Rule 2.1 (required, undecidable, system)
A project shall not contain unreachable code.

= Rule 9.1 (mandatory, undecidable, system)
The value of an object with automatic storage duration shall not be read before it has
been set.

= Rule 14.3 (required, undecidable, system)
Controlling expressions shall not be invariant.

= Rule 17.2 (required, undecidable, system)
No recursive function calls

Cybersecurity and Safety - Friend or Foe?

€l Absint

Static Program Analysis

= Computes results only from program structure, without executing the software.

= Categories, depending on analysis depth:
= Syntax-based: Coding guideline checkers (e.g. MISRA C)
= Semantics-based

Question: Is there an error in the program?

-y “ ” e Exact WCET
= False positive: answer wrongly “Yes W4
= False negative: answer wrongly “No” v Execution Time / Stack Usage

= Unsound: Bug-finders / bug-hunters.
= False positives: possible ,\} /\Zfound
= False negatives: possible

Execution Time / Stack Usage

A sound

Execution Time / Stack Usage

MSound / Abstract Interpretation-based
= False positives: possible

= No false negatives = Soundness
No defect missed

o
Cybersecurity and Safety - Friend or Foe? “ Absint

Abstract Interpretation

= Semantics based methodology for program analysis

= Formal method — supports correctness proofs
= Efficiency: scales to real-life industry applications due to abstractions
= Soundness:
= Correctness of abstractions proven.
= Never fail to report a defect from the class of defects under analysis

= Safety: over-approximate the program semantics. Some precision may be lost, but always on the
safe side.

sound Sound: no undetected errors

//\ Detected errors
N N

Execution Time / Stack/Usage

Cybersecurity and Safety - Friend or Foe?

€l Absint

Analysis Depth

= Division by zero
= a/0 - division by zero always happens
= can be detected syntactically
= a/b - division by zero can occur if b might be zero
= semantic information needed: value range of b

= Unsound analyzer:
= Alarm on a/b: division by zero might happen
= No alarm on division on a/b: division by zero might still happen!

= Sound analyzer:
= Definite alarm on a/b (b==0): division by zero will happen in given context
= Alarm on a/b: division by zero might happen
= No alarm on division on a/b: proof that b # 0, no division by 0 possible

Sound Interference Analysis for Software Components

€l Absint

Runtime Error Analysis

= Abstract Interpretation-based static runtime error analysis at source code level

= Astrée detects all runtime errors* with few false alarms: [F=.

nnnnn Overview

i Metrcs | Dataflaw | Filter

= Covered defect classes: array index out of bounds,
int/float division by 0, invalid pointer dereferences,
uninitialized variables, arithmetic overflows, data races, W,
lock/unlock problems, deadlocks, ...
= Data and control flow analysis (data and control coupling), i s
interference analysis, alias analysis S
= Taint analysis (data safety / security), SPECTRE detection e
+ User-defined assertions, unreachable code, non-terminating loops

+ Check coding guidelines — RuleChecker included: MISRA C/C++, Adaptive AUTOSAR C++,
CERT C/C++, CWE, ISO TS 17961 (standalone operation: QA-MISRA)

+ Automatic support for ARINC653/0SEK/AUTOSAR OS configurations
» Supports C and safety-critical C++

Runtime Error Analysis
* Defects due to undefined / unspecified behaviors of the programming language Data & Control Flow Analysis

Cybersecurity and Safety - Friend or Foe?

€l Absint

Data and Control Flow Analysis

= Control flow analysis
= Caller/callee relationships between functions
= Call graph
= Function calls per concurrent thread

= Data flow analysis

= List of global/static variables with information about
= |ocations/functions/processes performing read/write accesses

" access properties:

= Thread-local
= Shared
= Subject to data race

= Data and control coupling / Interference analysis
= Defined at software component level

= Soundness: no data/control flow is missed
= Aware of data and function pointers, task interference, ...

Cybersecurity and Safety - Friend or Foe?

€l Absint

Data and Control Coupling Analysis

= Purpose: determine effective data and control flow between software components
= May be desired or undesired, to be further investigated

= Behaviors undefined or unspecified in the programming language may have undefined
/ unspecified effects on data and control flow, hence, have to be considered as control

/ data flow defect.

= Example: Division by 0, causing a trap, leading to program termination.

= Sound runtime error analysis is
prerequisite for data and control flow/coupling analysis

€l Absint

Cybersecurity and Safety - Friend or Foe?

Static Taint Analysis

" Purpose: Static analysis to track flow of tainted values through program.

= Concepts:
= Taint source: origin of tainted values
= Taint sink: memory location: operands and arguments to be protected from tainted values
= Sanitization: remove taint from value, e.g. by replacement or termination

= User interaction to identify tainted sources and sinks.

= Typical applications:
= Information Flow (Confidentiality / Information Leaks)
= Propagation of Error Values (Data and Control Flow)

= Astrée:
= Universal user-configurable taint analysis
= Detection of Spectre V1/V1.1/SplitSpectre vulnerabilities
= Data and Control Coupling / Interference Analysis

Cybersecurity and Safety - Friend or Foe?

€l Absint

Component Tainting

= Taint analysis allows to track the flow of values.

= Computing data dependences:
= Taint all variables (global, static and local) of component C with hue®
= All variables of a component C are taint sinks for hues hue* of all components X # C.
= All variable reads in a component C are interpreted as taint sink for hue®, X = C.
= Automatic notification of out-of-component accesses to values from C.
= Supports sanitization: values from C legal to access via gateway function f.

= Computing control dependences:

= Taint sinks can only be
= Guards, e.g., in conditional statements, loops or switch statements, and in
= Function pointer dereferences

Cybersecurity and Safety - Friend or Foe?

€l Absint

= Side channel attack:
Speculative execution
(primarily branch prediction
on array bound accesses)
exploited to load confidential
data in the cache from where
they are leaked.

= Billions of processors affected:
ARM, Intel, AMD, IBM, ...

= Many variants:

SPECTRE

&he Washinaton Post

EEEEEEEEEE

Huge security flaws revealed — and tech
companies can barely keep up

eth Dwoskin and H

€he New York Times

Researchers Discover Two Major
c~"\ CYBERSECURITY @ J

) & INFRASTRUCTURE ||T|D Flaws in the World’s Computers
YY) SECURITY AGENCY Il

Alerts and Tips Resources
National Cyber Awareness System > Alerts > Meltdown and Spectre Side-Channel Vulnerability Guidance

Alert (TA18-004A)

Meltdown and Spectre Side-Channel Vulnerability Guidance

Spectre Variant V1, V1.1, SplitSpectre, V2, V4, ret2spec, Spectre-RSB, more still being

discovered

= As of today: no protection known without CPU architecture changes

Cybersecurity and Safety - Friend or Foe?

€l Absint

Spectre Classes

" Transient execution attacks: transfer microarchitectural state changes caused by the
execution of transient instructions (i.e., whose result is never committed to architectural
state) to an observable architectural state.

= Meltdown: transient out-of-order instructions after CPU exception
= Spectre: exploit branch misprediction events

= Spectre types
= Spectre-PHT: Pattern History Table > Spectre V1, V1.1, SplitSpectre
= Spectre-BTB: Brant Target Buffer > Spectre V2
= Spectre-STL: Store-to-Load Forwarding > Spectre V4
= Spectre-RSB: Return Stack Buffer > ret2spec, Spectre-RSB

o
Cybersecurity and Safety - Friend or Foe? “ Absint

Vulnerable Code and Fix

ErrCode vulnerablel (unsigned) > Untrusted data

{ (attacker-controlled)
if | >=) A

return E INVALID PARAMETER;
}

unsigned ul = [17

arr2.dataful];
\ Value read from arr1l is used to

} index arr2. The memory access

! ! Fix modifies the cache.

Timing attack can identify cache

Can be executed with out-of-range
values after mis-predicted branches

v

unsigned u?2

ErrCode vulnerablel (unsigned)

{ cell with hit, which leaks ul, ie.,
if >=) 1 the contentsof arrl.
return E INVALID PARAMETER;
Elnsigned fidx = FENCEIDX (idx,arrl.size); — FENCEIDX maps 1dx into the
unsigned ul - (fidx]; feasible array range.
ﬁﬁéigned u2 = arr2.dataful];

Cybersecurity and Safety - Friend or Foe?

€l Absint

Taint Analysis for Spectre

"= Two taints: controlled and dangerous

= Manual tainting of user-controlled values as controlled
= E.g., all parameters of “public” API functions

= Automatic detection of comparison of controlled values with bounds
= Taint automatically changed from controlled todangerous

= Remove dangerous taint at end of speculative execution window.
Architecture-independent solution:

= Automatic reset to controlled at control flow join

Cybersecurity and Safety - Friend or Foe?

€l Absint

Spectre V1/V1.1/SplitSpectre Detection

volatile int controlled;
__ASTREE volatile input((controlled; [1,2]));
int victim function(size t[x]]) {
if ([x]]< arrayl size) {
temp &= array?2 [larrayl]] * 51271;
: ;
return [x]); ALARM: Spectre vulnerability

}
void main () {
unsigned int val, retval;

init (&val) ; //reads val from the environment
__ASTREE taint ((val; controlled));

[retval]|= victim function(|vall);
}

= No complete protection but attack surface can be reduced

®
Cybersecurity and Safety - Friend or Foe? h Absint

Efficiency

Sound Static Analysis

Time to Analyze |weeks minutes
< >

Frequency of Analyses | per release per change
< >

Who runs Analyses | QA everyone
< >

Level of Automation | manual automatic
< >

False Alarm Rate | high low
< B

Defect Detection Rate | low complete
< >

Cybersecurity and Safety - Friend or Foe?

€l Absint

Conclusion

= More and more embedded applications are safety-critical and/or mission-critical
= Preventing safety and security hazards is essential to build trust

= Safety and security goals have to be aligned, often compatible

= Coding guidelines to minimize programming errors needed

= Sound static analysis crucial for safety and security

= Defect prevention:

no defect shipped to customer = no callback, no liability lawsuits
= Absence of critical code defects can be proven
= No runtime errors: "pretty good security"

" |nherent complexity of security is higher
= Additional measures needed
= Data and control flow analysis
= Taint analysis, e.g., for detecting Spectre vulnerabilities

Cybersecurity and Safety - Friend or Foe?

€l Absint

ﬁ Absint

email: info@absint.com

http://www.absint.com

®
Cybersecurity and Safety - Friend or Foe? h Absint

