
Verification Objectives for Cybersecurity and Safety
– Friend or Foe?

Daniel Kästner
AbsInt GmbH, 2022

kaestner@absint.com

Daniel Kästner
▪ 1993-1997: Study of Computer Science and Business Economics at

Saarland University, Saarbrücken, Germany

▪ 1997: VDI Saar Master’s Thesis Award

▪ 1997-2000: Graduate College at Saarland University

▪ 1998: Co-Founder of AbsInt GmbH

▪ 2000: PhD on Code Optimization for Embedded Processors

▪ 2000-2003: Research Associate at Saarland University & Senior Software Engineer at AbsInt

▪ 2001: SaarLB Science Award

▪ Since 2003: CTO of AbsInt

▪ Since 2014: Member of IEC-61508 Formal Methods Project Team

▪ Since 2017: Member of MISRA C Working Group

▪ Since 2020: Member of MISRA SQM Working Group

▪ Best paper awards: EDCC 2015, ERTS 2016, CYBER 2017, ERTS 2020, ERTS 2022

2

Cybersecurity and Safety - Friend or Foe?

Daniel Kästner
▪ Research topics:

▪ embedded systems

▪ functional safety

▪ cybersecurity

▪ static program analysis

▪ Selected publications (2019-2022)
▪ D. Kästner, L. Mauborgne, S. Wilhelm, C. Mallon, C. Ferdinand. Static Data and Control Coupling Analysis. In ERTS 2022: Embedded Real Time Software and

Systems, 11th European Congress, Jun 2022, Toulouse, France. Available at the HAL open archive, URL: https://hal.archives-ouvertes.fr/hal-03694546

▪ D. Kästner, M. Pister, C. Ferdinand. Obtaining DO-178C Certification Credits by Static Program Analysis (Best Paper Award). In ERTS 2022: Embedded Real
Time Software and Systems, 11th European Congress, Jun 2022, Toulouse, France. Available at the HAL open archive, URL: https://hal.archives-
ouvertes.fr/hal-03694553

▪ R. Wilhelm, M. Pister, G. Gebhard, and D. Kästner. Testing Implementation Soundness of a WCET Analysis Tool. In Jian-Jia Chen, Ed., A Journey of
Embedded and Cyber-Physical Systems, Springer Open Access, 2021. ISBN 978-3-030-47487-4 (eBook).

▪ D. Kästner, L. Mauborgne, S. Wilhelm, C. Ferdinand. High-Precision Sound Analysis to Find Safety and Cybersecurity Defects (Best Paper Award). In ERTS
2020: Embedded Real Time Software and Systems, 10th European Congress, Jan 2020, Toulouse, France.

▪ D. Kästner, L. Mauborgne, C. Ferdinand, H. Theiling. Detecting Spectre Vulnerabilities by Sound Static Analysis. In CYBER 2019: Proceedings of the Fourth
International Conference on Cyber-Technologies and Cyber-Systems, Porto, 2019.

▪ D. Kästner, B. Schmidt, M. Schlund, L. Mauborgne et al. Analyze this! Sound static analysis for integration verification of large-scale automotive software.
SAE Technical Paper 2019-01-1246, 2019.

▪ D. Kästner, J. Barrho, U. Wünsche, M. Schlickling, B. Schommer et al. CompCert: Practical Experience on Integrating and Qualifying a Formally Verified
Optimizing Compiler. In ERTS 2018 — Embedded Real Time Software and Systems, January 2018, Toulouse, France. <hal-01643290>

3

Cybersecurity and Safety - Friend or Foe?

▪ compiler technology

▪ coding guidelines

▪ software quality

▪ formal methods

Embedded System Trends – Safety and Security

▪ Snowballing software complexity (2016: >100 million LOC per car [1])

▪ More and more safety-critical functionality in software
▪ Autonomy: Highly automatic driving, Unmanned Aerial Vehicles, robotics, smart medical devices, …

▪ Increasing connectivity in safety-critical systems
▪ Cloud-based services

▪ C2X communication

 Increasing frequency and attack scale of cybersecurity issues
▪ 2015 FDA blacklisting Hospira Symbiq infusion pump (Wifi tampering)

▪ 2015 General Motors OnStar RemoteLink App

▪ 2016 Jeep Cherokee hack (Fiat Chrysler Uconnect)

▪ 2017 CAN Bus Standard Vulnerability (ICS-ALERT-17-209-01)

 Increasing risk of critical software defects

4

▪ Over-the-air updates

▪ Smart mobility / grid / …

Cybersecurity and Safety - Friend or Foe?

[1] Ondrej Burkacky, Johannes Deichmann, Georg Doll, Christian Knochenhauer. Rethinking car software and electronics architecture.
Report McKinsey & Company, Feb. 2018.

A Security Issue ?
void heartbleed_bug(char *input_buffer, unsigned int input_length) {

char *mybuffer = (char*) malloc(input_length);

memcpy(mybuffer,input_buffer,input_length);

}

5

▪ Heartbleed bug (2014)

▪ Security bug in OpenSSL

▪ Passwords, social insurance numbers,
patient records, ... leaked

▪ Millions of people affected

▪ Estimated cost >$500M*

▪ Underlying code defects are
safety-relevant!

▪ Defects detectable by
static analysis

*https://en.wikipedia.org/wiki/Heartbleed (retrieved April 2017)

Cybersecurity and Safety - Friend or Foe?

Dependability

▪ Functional Safety
▪ Absence of unreasonable risk to life and property caused by malfunctioning behavior of the system

▪ Security
▪ Absence of harm caused by malicious (mis-)usage of the system

▪ Reliability
▪ Probability with which the system performs its required functions under specified conditions for a

specified period of time

▪ Availability
▪ Probability with which the system operates at a random time within its life range

▪ Safety of the Intended Functionality – SOTIF
▪ Absence of unreasonable risk due to hazards resulting from functional insufficiencies of the intended

functionality

6

Cybersecurity and Safety - Friend or Foe?

Functional Safety
▪ Demonstration of functional correctness

▪ Functional requirements are satisfied

➢ Automated and/or model-based testing

➢ Formal techniques: model checking, theorem proving

▪ Satisfaction of safety-relevant quality requirements
▪ No runtime errors (e.g. division by zero, overflow,

invalid pointer access, out-of-bounds array access)

▪ Resource usage:
▪ Timing requirements (e.g. WCET, WCRT)

▪ Memory requirements (e.g. no stack overflow)

▪ Robustness / freedom of interference (e.g. no corruption of content,
incorrect synchronization, illegal read/write accesses)

▪ Compliance with the software architecture, data and control coupling

➢ Insufficient: Tests & Measurements
▪ No specific test cases, unclear test end criteria, no full coverage possible

➢ Static analysis
 Formal technique (sound): Abstract Interpretation – no defect missed

7

Cybersecurity and Safety - Friend or Foe?

Required by

DO-178B / DO-178C /

ISO-26262, EN-50128,

IEC-61508

Required by

DO-178B / DO-178C /

ISO-26262, EN-50128,

IEC-61508
+ Security-relevant

ISO 21434, …

Code Guideline Checking

Runtime Error Analysis /
Data & Control Flow Analysis /
Data and Control Coupling

Code Metrics

WCET Analysis

Stack Usage Analysis

(Information-/Cyber-) Security Aspects
▪ Confidentiality

▪ Information shall not be disclosed to unauthorized entities

 safety-relevant

▪ Integrity
▪ Data shall not be modified in an unauthorized or undetected way

 safety-relevant

▪ Availability
▪ Data is accessible and usable upon demand

 safety-relevant

+ Safety

8

Cybersecurity and Safety - Friend or Foe?

In some cases: not safe not secure

In some cases: not secure not safe

Relation between Safety and Cybersecurity

9

Cybersecurity and Safety - Friend or Foe?

Cybersecurity-Critical
Systems

Safety-Critical
Systems

System
Safety
Engineering
Activities

System
Cybersecurity

Engineering
Activities

Scope of this Talk

10

Open Discussion: Cyber-systems Protection by Design

Source: https://en.wikipedia.org/wiki/Information_security

Cybersecurity at the Source Code Level
▪ Many security vulnerabilities due to undefined / unspecified behaviors in the

programming language semantics:
▪ buffer overflows, invalid pointer accesses, uninitialized memory accesses, data races, etc.

▪ Consequences: denial-of-service / code injection / data breach

▪ Absence can be shown with sound static analysis!

▪ Beyond runtime errors:
▪ Coding guidelines

▪ Data and Control Flow analysis

▪ Taint analysis (data safety, impact analysis, …)

▪ Side channel attacks
▪ Spectre

▪ …

11

▪ Security is more complex!

▪ Safety: property of single
execution traces

▪ Security: property of sets of
execution traces
(hyperproperties)

Cybersecurity and Safety - Friend or Foe?

SSP – Normative Landscape
Functional Safety: DO-178B/C, ISO 26262, IEC 61508, EN 50128, EN 62304, …

Security: SAE-J3061, ISO/SAE 21434, IEC TR 63069, IEC 62443,
ISO 15408, MDCG 2019-16, …

Performance / System Safety: ISO PAS 21448 DIS (SOTIF)

UL4600 (Autonomous products)
ISO NWIP TS5083 (Automated road driving systems)

(Product Safety: IATF 16949, Legislation (EU General Product Safety Directive,
FMVSS, Type Approval))

12

Cybersecurity and Safety - Friend or Foe?

Bugs Happen

13

Size of SW projects
in FP

Average Defect
Potential

Defect Removal
Efficiency

100 3,00 98%

10.000 6,25 93%

1.000.000 8,25 86%

1 FP (Function point) ~ 160 LOC (C language)
64 LOC (Ada)
32 LOC (C++)

Tables Tab. 6.9 / Tab. 6.10 / Tab. 6.11 / Tab. 6.12 (Numbers for Systems & Embedded Software Projects) from:
[4] Capers Jones, Olivier Bonsignour. The Economics of Software Quality. Addison-Wesley Professional; 2011.

Total potential defects correlated with defect removal efficiency for:
10.000 FP ~ 1.6 MLOC C-Code:
 62.500 defects
 ~4.375 defects delivered to customer

Cybersecurity and Safety - Friend or Foe?

Cost of Poor Software Quality

14

Areas of cost

▪ Cost of poor quality software in US in 2018:
~2.84 trillion USD

▪ „The key strategy for reducing the cost
of poor software quality is to find and
fix problems and deficiencies
as close to the source as possible,
or better yet, prevent them
from happening in the first place.“

[1] Herb Krasner. The Cost of Poor-Quality Software in the US, CISQ, 2018.

Cybersecurity and Safety - Friend or Foe?

Costs of Software Defects
▪ Speculative table on costs of

software defects, considering, e.g.,
▪ Toyota brake problem

▪ NASA Mariner 1 failure

▪ NASA Polar Lander failure

▪ Therac-25 radiation poisoning

▪ Ariane-5 explosion

▪ Patriot missile targeting error

▪ Chinook helicopter engine failure

▪ F-22 Raptor flight control errors

▪ Shutdown of Yorktown shipboard software

▪ Some software defects can be very expensive

15

[4] Capers Jones, Olivier Bonsignour. The Economics of Software Quality. Addison-Wesley Professional; 2011.

Cybersecurity and Safety - Friend or Foe?

Effectiveness of Software Defect Prevention Methods

▪ Total of 65 methods estimated with static analysis ranked 7

16

[4] Capers Jones, Olivier Bonsignour. The Economics of Software Quality. Addison-Wesley Professional; 2011.

Cybersecurity and Safety - Friend or Foe?

Software Complexity and Defect Risk

▪ Defect potential increases
with complexity of SW

▪ Defect removal efficiency decreases
with complexity of SW

▪ Required hardware complexity increases with
complexity of SW
▪ Non-deterministic interference effects on

high-end multicore architectures

17

Code Complexity

P
o

s
t-

R
e

le
a

s
e
 D

e
fe

c
t
R

is
k

 Requires appropriate development processes and
usage of highly efficient and powerful software tools

Acceptable Level of Risk

Open Discussion: Cyber-systems Protection by Design

Capers Jones, Olivier Bonsignour. The Economics of Software Quality. Addison-Wesley Professional; 2011.

ISO 26262 – Modelling and Coding Guidelines

18

Excerpt from: Sec. 5.4.3 – General topics for the product development at the software level,

ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2018.

Cybersecurity and Safety - Friend or Foe?

ISO 26262 – SW Unit Design and Implementation

19

Excerpt from:

ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2018.

Cybersecurity and Safety - Friend or Foe?

Sources of Security Vulnerabilities in C
▪ Many security vulnerabilities due to undefined /

unspecified behaviors in the
programming language semantics:
▪ Stack-based buffer overflows

▪ Heap-based buffer overflows

▪ Invalid pointer accesses (null, dangling, …)

▪ Uninitialized memory accesses

▪ Integer errors

▪ Format string vulnerabilities

▪ Concurrency defects (TOCTOU races, …)

 Consequences: denial-of-service, code injection,
data breach

20

Cybersecurity and Safety - Friend or Foe?

21

Cybersecurity and Safety - Friend or Foe?

ISO 21434 – Road vehicles — Cybersecurity Engineering

ISO 21434 – Road vehicles — Cybersecurity Engineering

22

Cybersecurity and Safety - Friend or Foe?

ISO 26262 – SW Unit Design and Implementation

23

Excerpt from:

ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2018.

Cybersecurity and Safety - Friend or Foe?

ISO 26262 – Methods for Software Unit Verification

24

Cybersecurity and Safety - Friend or Foe?

Excerpt from:

ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2018.

ISO 262626 – Methods for Software Integration Verification

25

Excerpt from:

ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2018.

Cybersecurity and Safety - Friend or Foe?

ISO 21434 – Road vehicles — Cybersecurity Engineering

26

Cybersecurity and Safety - Friend or Foe?

Example Safety/Security Goal Conflicts
▪ Car locking

▪ Safety: Unlock car in case of accident.

▪ Security: Lock car when engine not running for some time.

▪ Update policy
▪ Safety: Updates only available after full integration verification

▪ Security: Provide quick patches to react to cybersecurity threads

▪ Connectivity policy
▪ Safety: Enforce minimal connectivity

▪ Security: Enable over-the-air updates for quick reactivity

27

Cybersecurity and Safety - Friend or Foe?

Aligning Safety and Security Processes

▪ HARA (Hazard and Risk Analysis)
▪ Potential item hazards

▪ Potential vehicle level hazards

▪ Potential worst-case hazard
scenario

▪ ASIL determination
▪ Severity

▪ Exposure

▪ Controllability

▪ Safety Goals

28

Cybersecurity and Safety - Friend or Foe?

▪ TARA (Thread and Risk Analysis)
▪ Potential item threats

▪ Potential vehicle level threats

▪ Potential worst-case thread
scenario

▪ CAL determination
▪ Severity

▪ Attack likelihood

▪ Controllability

▪ Cybersecurity Goals

Touching points

▪ Safety and cybersecurity processes have to be aligned.

▪ Example for concept phase:

Coding Guidelines

▪ “Safety”
▪ MISRA C:2004, MISRA C:2012, MISRA C++:2008

▪ Guidelines to define a language subset to avoid or reduce the risk for programming errors

▪ “Security”
▪ ISO/IEC TS 17961:2013 "C Secure"

▪ MISRA C:2012 Addendum 2 gives mapping to C Secure

▪ SEI CERT C Coding Standard / CERT C++
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard

▪ Rules to facilitate developing safe, reliable, and secure systems

▪ MISRA C:2012 Addendum 3 gives mapping to CERT C

▪ MITRE Common Weakness Enumeration CWE
https://cwe.mitre.org

29

Cybersecurity and Safety - Friend or Foe?

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://cwe.mitre.org/

Coding Guidelines – Safety vs. Security
▪ MISRA C:2012 vs. ISO/IEC TS 17961:2013

▪ Only 4 "C Secure" rules not addressed by MISRA C:2012

▪ Those have been added with MISRA C:2012 Amendment 1

▪ SEI CERT C – Example Rules:
▪ EXP.33 Do not read uninitialized memory

▪ EXP.34 Do not dereference null pointers

▪ INT.32 Ensure that operations on signed integers do not result in overflow

▪ INT.33 Ensure that division and reminder operations do not result in divide-by-zero errors

➢ Run-time errors due to undefined/unspecified behaviors

 Strong overlap with safety-oriented rule sets (cf. MISRA C Addendum 3)

▪ Common Weakness Enumeration CWE
▪ Similar

▪ Adaptive Autosar C++14 Coding Guidelines, …

30

Cybersecurity and Safety - Friend or Foe?

MISRA C:2012 Guideline Classification
▪ Directives (17)

▪ No fully automatic compliance check on source code
▪ Criteria not precisely defined

▪ Additional activities needed
(checking external documentation, …)

▪ Example (Dir 3.1.):
All code shall be traceable to documented requirements

▪ Rules (156)
▪ Automatic compliance check possible

▪ Scope: system (49) vs. single-translation-unit (107)

▪ Algorithmic class: undecidable vs. decidable

31

Cybersecurity and Safety - Friend or Foe?

MISRA C Guideline Classification
▪ Decidable rules (119)

▪ syntactical property

▪ Example – Rule 2.7.
There should be no unused parameters in functions.

▪ Undecidable rules (37)
▪ semantical property absence of defect

▪ Example – Rule 9.1:
The value of an object with automatic storage duration shall not be read before it
has been set

32

Cybersecurity and Safety - Friend or Foe?

Entscheidungsproblem & Halting Problem
▪ Decision problem: find an algorithm to determine for every possible

parameter instance whether a certain parametric statement is true or false
in a given axiomatic system [Hilbert 1928].

▪ Halting Problem: Given some algorithm and some input to the algorithm
(both together are the parameter) does the algorithm halt when run on
the given input?

▪ The Halting Problem is undecidable [Turing 1937]

A Turing Machine that decides whether some (other) Turing Machine halts
when run on an input cannot exist.

▪ Rice Theorem: All non-trivial semantic statements about Turing machines
(or programs) are undecidable.

33

Cybersecurity and Safety - Friend or Foe?

The Halting Problem
▪ C is a Turing-complete programming language, i.e., any possible Turing

machine can be implemented as a C program.

▪ Does this program terminate?

34

Cybersecurity and Safety - Friend or Foe?

int Collatz(int c)

{

int n=c;

while (1 != n) {

if (0 == n%2) n = n/2;

else n = (3*n)+1;

}

return 0;

}

Undecidables Rules in MISRA C:2012 – Examples
▪ Dir 4.7 (required, undecidable, system)

If a function returns error information, then that error information shall be tested.

▪ Rule 2.1 (required, undecidable, system)
A project shall not contain unreachable code.

▪ Rule 9.1 (mandatory, undecidable, system)
The value of an object with automatic storage duration shall not be read before it has
been set.

▪ Rule 14.3 (required, undecidable, system)
Controlling expressions shall not be invariant.

▪ Rule 17.2 (required, undecidable, system)
No recursive function calls

35

Cybersecurity and Safety - Friend or Foe?

Static Program Analysis
▪ Computes results only from program structure, without executing the software.

▪ Categories, depending on analysis depth:

▪ Syntax-based: Coding guideline checkers (e.g. MISRA C)

▪ Semantics-based

▪ Unsound: Bug-finders / bug-hunters.
▪ False positives: possible

▪ False negatives: possible

Sound / Abstract Interpretation-based
▪ False positives: possible

▪ No false negatives Soundness
No defect missed

36

Cybersecurity and Safety - Friend or Foe?

Question: Is there an error in the program?

▪ False positive: answer wrongly “Yes”

▪ False negative: answer wrongly “No” Execution Time / Stack Usage

Execution Time / Stack Usage

sound

Execution Time / Stack Usage

Exact WCET

unsound

Abstract Interpretation
▪ Semantics based methodology for program analysis

▪ Formal method – supports correctness proofs
▪ Efficiency: scales to real-life industry applications due to abstractions

▪ Soundness:

▪ Correctness of abstractions proven.

▪ Never fail to report a defect from the class of defects under analysis

▪ Safety: over-approximate the program semantics. Some precision may be lost, but always on the
safe side.

37

Cybersecurity and Safety - Friend or Foe?

False alarmDetected errors

Sound: no undetected errorssound

Execution Time / Stack Usage

Analysis Depth
▪ Division by zero

▪ a/0 → division by zero always happens
▪ can be detected syntactically

▪ a/b → division by zero can occur if b might be zero
▪ semantic information needed: value range of b

▪ Unsound analyzer:
▪ Alarm on a/b: division by zero might happen

▪ No alarm on division on a/b: division by zero might still happen!

▪ Sound analyzer:
▪ Definite alarm on a/b (b==0): division by zero will happen in given context

▪ Alarm on a/b: division by zero might happen

▪ No alarm on division on a/b: proof that 𝑏 ≠ 0, no division by 0 possible

38

Sound Interference Analysis for Software Components

Runtime Error Analysis
▪ Abstract Interpretation-based static runtime error analysis at source code level

▪ Astrée detects all runtime errors* with few false alarms:
▪ Covered defect classes: array index out of bounds,

int/float division by 0, invalid pointer dereferences,
uninitialized variables, arithmetic overflows, data races,
lock/unlock problems, deadlocks, …

▪ Data and control flow analysis (data and control coupling),
interference analysis, alias analysis

▪ Taint analysis (data safety / security), SPECTRE detection

+ User-defined assertions, unreachable code, non-terminating loops

+ Check coding guidelines – RuleChecker included: MISRA C/C++, Adaptive AUTOSAR C++,
CERT C/C++, CWE, ISO TS 17961 (standalone operation: QA-MISRA)

+ Automatic support for ARINC653/OSEK/AUTOSAR OS configurations

➢ Supports C and safety-critical C++

39

Cybersecurity and Safety - Friend or Foe?

* Defects due to undefined / unspecified behaviors of the programming language

Runtime Error Analysis
Data & Control Flow Analysis

Data and Control Flow Analysis
▪ Control flow analysis

▪ Caller/callee relationships between functions

▪ Call graph

▪ Function calls per concurrent thread

▪ Data flow analysis
▪ List of global/static variables with information about

▪ locations/functions/processes performing read/write accesses

▪ access properties:
▪ Thread-local

▪ Shared

▪ Subject to data race

▪ Data and control coupling / Interference analysis
▪ Defined at software component level

▪ Soundness: no data/control flow is missed
▪ Aware of data and function pointers, task interference, …

40

Cybersecurity and Safety - Friend or Foe?

Data and Control Coupling Analysis
▪ Purpose: determine effective data and control flow between software components

▪ May be desired or undesired, to be further investigated

▪ Behaviors undefined or unspecified in the programming language may have undefined
/ unspecified effects on data and control flow, hence, have to be considered as control
/ data flow defect.

▪ Example: Division by 0, causing a trap, leading to program termination.

 Sound runtime error analysis is
prerequisite for data and control flow/coupling analysis

41

Cybersecurity and Safety - Friend or Foe?

Static Taint Analysis
▪ Purpose: Static analysis to track flow of tainted values through program.

▪ Concepts:
▪ Taint source: origin of tainted values

▪ Taint sink: memory location: operands and arguments to be protected from tainted values

▪ Sanitization: remove taint from value, e.g. by replacement or termination

▪ User interaction to identify tainted sources and sinks.

▪ Typical applications:
▪ Information Flow (Confidentiality / Information Leaks)

▪ Propagation of Error Values (Data and Control Flow)

▪ Astrée:
▪ Universal user-configurable taint analysis

▪ Detection of Spectre V1/V1.1/SplitSpectre vulnerabilities

▪ Data and Control Coupling / Interference Analysis

42

Cybersecurity and Safety - Friend or Foe?

Component Tainting
▪ Taint analysis allows to track the flow of values.

▪ Computing data dependences:
▪ Taint all variables (global, static and local) of component C with ℎ𝑢𝑒𝐶

▪ All variables of a component C are taint sinks for hues ℎ𝑢𝑒𝑋 of all components X ≠ C.

▪ All variable reads in a component C are interpreted as taint sink for ℎ𝑢𝑒𝑋, 𝑋 ≠ 𝐶.

Automatic notification of out-of-component accesses to values from C.

Supports sanitization: values from C legal to access via gateway function f.

▪ Computing control dependences:

▪ Taint sinks can only be
▪ Guards, e.g., in conditional statements, loops or switch statements, and in

▪ Function pointer dereferences

43

Cybersecurity and Safety - Friend or Foe?

SPECTRE
▪ Side channel attack:

Speculative execution
(primarily branch prediction
on array bound accesses)
exploited to load confidential
data in the cache from where
they are leaked.

▪ Billions of processors affected:
ARM, Intel, AMD, IBM, …

▪ Many variants:
Spectre Variant V1, V1.1, SplitSpectre, V2, V4, ret2spec, Spectre-RSB, more still being
discovered

▪ As of today: no protection known without CPU architecture changes

44

Cybersecurity and Safety - Friend or Foe?

Spectre Classes
▪ Transient execution attacks: transfer microarchitectural state changes caused by the

execution of transient instructions (i.e., whose result is never committed to architectural
state) to an observable architectural state.
▪ Meltdown: transient out-of-order instructions after CPU exception

▪ Spectre: exploit branch misprediction events

▪ Spectre types
▪ Spectre-PHT: Pattern History Table ▷ Spectre V1, V1.1, SplitSpectre

▪ Spectre-BTB: Brant Target Buffer ▷ Spectre V2

▪ Spectre-STL: Store-to-Load Forwarding ▷ Spectre V4

▪ Spectre-RSB: Return Stack Buffer ▷ ret2spec, Spectre-RSB

45

Cybersecurity and Safety - Friend or Foe?

Vulnerable Code and Fix

46

Cybersecurity and Safety - Friend or Foe?

ErrCode vulnerable1 (unsigned idx)

{

if (idx >= arr1.size) {

return E_INVALID_PARAMETER;

}

unsigned u1 = arr1.data[idx];

...

unsigned u2 = arr2.data[u1];

...

}

Untrusted data
(attacker-controlled)

Can be executed with out-of-range
values after mis-predicted branches

Value read from arr1 is used to
index arr2. The memory access
modifies the cache.

Timing attack can identify cache

cell with hit, which leaks u1, ie.,

the contents of arr1.

ErrCode vulnerable1 (unsigned idx)
{

if (idx >= arr1.size) {
return E_INVALID_PARAMETER;

}
unsigned fidx = FENCEIDX(idx,arr1.size);
...

unsigned u1 = arr1.data[fidx];
...
unsigned u2 = arr2.data[u1];

...
}

FENCEIDX maps idx into the

feasible array range.

Fix

Taint Analysis for Spectre
▪ Two taints: controlled and dangerous

▪ Manual tainting of user-controlled values as controlled
▪ E.g., all parameters of “public” API functions

▪ Automatic detection of comparison of controlled values with bounds

 Taint automatically changed from controlled to dangerous

▪ Remove dangerous taint at end of speculative execution window.
Architecture-independent solution:

 Automatic reset to controlled at control flow join

47

Cybersecurity and Safety - Friend or Foe?

Spectre V1/V1.1/SplitSpectre Detection

▪ No complete protection but attack surface can be reduced

48

volatile int controlled;

__ASTREE_volatile_input((controlled; [1,2]));

int victim_function(size_t x) {

if (x < array1_size) {

temp &= array2 [array1[x] * 512];

}

return x ;

}

void main(){

unsigned int val, retval;

init(&val); //reads val from the environment

__ASTREE_taint((val; controlled));

retval = victim_function(val);

}

ALARM: Spectre vulnerability

Cybersecurity and Safety - Friend or Foe?

Efficiency

49

weeks minutes

Sound Static Analysis

per release per change

QA everyone

manual automatic

high low

low complete

Time to Analyze

Frequency of Analyses

Who runs Analyses

Level of Automation

False Alarm Rate

Defect Detection Rate

Cybersecurity and Safety - Friend or Foe?

Conclusion
▪ More and more embedded applications are safety-critical and/or mission-critical

▪ Preventing safety and security hazards is essential to build trust

▪ Safety and security goals have to be aligned, often compatible

▪ Coding guidelines to minimize programming errors needed

▪ Sound static analysis crucial for safety and security
▪ Defect prevention:

no defect shipped to customer no callback, no liability lawsuits

▪ Absence of critical code defects can be proven

▪ No runtime errors: "pretty good security"

▪ Inherent complexity of security is higher
▪ Additional measures needed

▪ Data and control flow analysis

▪ Taint analysis, e.g., for detecting Spectre vulnerabilities

▪ …

50

Cybersecurity and Safety - Friend or Foe?

51

email: info@absint.com

http://www.absint.com

Cybersecurity and Safety - Friend or Foe?

