

High-Quality Immersive Video Streaming via Edge Caching and User Adaptation

Jinlei Jiang Tsinghua University, China jjlei@tsinghua.edu.cn

Joint work with: Dongbiao He, Cedric Westphal, Guangwen Yang, JJ Garcia-Luna-Aceves, Teng Ma, Shu-Tao Xia

About Me

Jinlei JIANG

- Associate Professor of Computer Science and Technology, Tsinghua University, P. R. China
- Humboldt Research Fellow (2007-2008)
- Research Interests
 - distributed computing and systems
 - big data storage and computing
 - cloud/edge computing
 - graph computing and database
 - software-defined networking

http://madsys.cs.tsinghua.edu.cn/~jinleijiang/

Outline

- Background & Challenges
- User Behavior Analysis
- Edge Caching & Prefetching
- Evaluation
- Concluding Remarks

Immersive video is popular now!

Immersive video, a.k.a 360-degree or spherical video, can provide users with **immersive and interactive experience** under their own control

Record: 360 camera

View: HMD or Glasses

\$47.7B https://www.mordorintelligence.com/industry-reports/virtual-reality-market/ The global market of immersive video streaming would reach by 2024

An overview of the video streaming system

Images from camera

Video frames at server

Time

Stitched images shown for users

Challenges of streaming immersive videos

large storage need

- Store multiple views of each scene for a large variety of client devices
- Keep video resolution high for good experience

3GB/minutes in size

high BW consumption

- At least 4K stream is needed to transmit a video in full view
- Serve many users at the same time

400Mbps

25Mbps (2D 4K video)

ultralow motion-tophoton delay

 The new view must be rendered in very limited time for good experience

FOV Change

< 10 milliseconds

Ultralow

Refer to MICHAEL ZINK et al., PROCEEDINGS OF THE IEEE, Vol. 107, No. 4, for more!

Practice: User/FoV adaptation

Practice: User/FoV adaptation (cont.)

Practice: In-network caching

- Where to place the cache & what's the unit (video or tile) for caching
- **How** to adapt the bitrate according to network condition

• A lot of work

 FoV-aware edge caching (MM'18), tile-based caching (MobiHoc'19), JERTC (MMM'19), Allies (Cloud'20), ...

Our solution: CUBIST

Edge Caching

Tile Prefetching

Outline

- Background & Challenges
- User Behavior Analysis
- Edge Caching & Prefetching
- Evaluation
- Concluding Remarks

Datasets, analysis method and focus

Dataset: Xavier Corbillon et al., MMSys'17

Exploration (Paris)

Static Focus (Rhino)

Rides (Rollercoaster) Moving Focus (Timelapse)

characteristics:

- It collects the user head movement data
- The dataset contains **59 users**
- Multiple kinds of videos: 6 videos

Method: projection and tiling Focus:

- Viewer motion
- head movement

Result: raw data analysis

User's eye position is hard to predict especially in long time

Conclusion: it is not useful to directly estimate the eye position

Result: viewport is predictable

d: the distance change of FoV with a given interval

(1) User moves **shortly** during a given interval:

-e.g., 85% of users moves 0.956 unit within 1000ms

(2) Only part of the view (FoV)

needed by the client

-e.g., uses less than 30.4% of the view in the sphere

	100ms	250ms	500ms	750ms	1000ms
95%	0.147	0.433	3.012	3.093	3.107
90%	0.096	0.255	0.567	1.11	2.983
85%	0.073	0.19	0.401	0.645	0.956

Result: tile request distribution

Tiling	Paris	Rhino	Rollercoaster	Timelapse
6*8	0.35	0.35	0.31	0.40
9*12	0.34	0.32	0.31	0.36
12*12	0.32	0.28	0.31	0.33

Key Findings: (1) Only a small portion of tiles are requested by users; (2) The tile frequency varies greatly inside a video (3) Most kinds of videos show the same behavior, while some other videos are not

tile frequency: the number of times that a tile is watched in the center of user's FoV, measured with all users on the same video

Result: tile interval distribution

Question to answer: how long will the user's gaze stay on the same tile? **Purpose**: to **predict** tile transition

Method: normalize the stay time and find the most suitable distribution

Summary about user behavior analysis

More can be done, please refer to Dongbiao He, Cédric Westphal et al., IFIP Networking 2019 for that

Outline

- Background & Challenges
- User Behavior Analysis
- Edge Caching & Prefetching
- Evaluation
- Concluding Remarks

Video as a unit for popularity estimation

Possible benefits:

• Easy to implement, e.g., reuse existing algorithms

Tile requirement estimation

Tile as a unit for caching

Method: Static Analysis (for caching in advance) + Dynamic Analysis (for prefetching)

Region Of Interest/ROI

Philosophy: most users focus on some
specific regions of the picture => ROI
Param.: #ROIs & Distance between ROIs

Dynamic analysis

To prefetch missing tiles based on

locality of user movement

• RTT

	100ms	250ms	500ms	750ms	1000ms
95%	0.147	0.433	3.012	3.093	3.107
90%	0.096	0.255	0.567	1.11	2.983
85%	0.073	0.19	0.401	0.645	0.956

Bitrate determination for video caching

Challenge: shared bandwidth

Reactive Caching:

Choose the video resolution based on "the average available bandwidth over a period"

$$\delta(t) = \frac{|Bw_t - Bw_{t-1}|}{\min\{Bw_t, Bw_{t-1}\}}$$

Proactive Prefetching:

- > Triggered after a cache miss happens
- Predict and prefetch tiles (identified by id) to be accessed soon but not in the cache yet
- Adapt to the real-time end-to-end delay

$$bitrates(\tau) = \frac{Bw \times \tau.t}{|d|*|\pi|}$$

CUBIST implementation

Outline

- Background & Challenges
- User Behavior Analysis
- Edge Caching & Prefetching
- Evaluation
- Concluding Remarks

CUBIST evaluation: settings

Datasets

- 25 videos
- 109 users

- X. Corbillon, F. De Simone, and G. Simon. 360-degree video head movement dataset.
- C. Wu, Z. Tan, Z. Wang, and S. Yang. A dataset for exploring user behaviors in VR spherical video streaming.

• Requests & Bandwidth

- User requests: GlobeTraff
- Bandwidth variation: 4G Trace
- J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen, and F. De Turck. HTTP/2-Based Adaptive Streaming of HEVC Video Over 4G/LTE Networks.

• Benchmarks

- Video Cache, CUBIST-NP
- Tile Cache

 A. Mahzari, A. T. Nasrabadi, A. Samiei, and R. Prakash. Fov-aware edge caching for adaptive 360° video streaming. MM 2018

Evaluation: benefit of hierarchical cache

- 1) the cache space is 20% of the total video size
- 2) the ratio of L1 to L2 cache is 3:2
- 3) he ratio of L1 to L2 hit varies between 9:1 and 7:3 randomly

CUBIST improves the throughput from **765MBps** to **39GBps**

Highlight: hierarchical cache design with fixed cache cost means larger cache space and higher cache hit ratio, which would bring in more benefit.

Evaluation: benefit of prefetching

Evaluation: benefit of caching

Evaluation: QoE of videos

Compared with Tile Cache, CUBIST only needs half of the video transitions

✓ CUBIST outperforms Tile Cache, whose median bitrate is 26.9Mbps, by 12.9% in video bitrate

Outline

- Background & Challenges
- User Behavior Analysis
- Edge Caching & Prefetching
- Evaluation
- Concluding Remarks

Conclusions

Immersive video streaming is challenging

- Ultrahigh bandwidth requirement
- Ultralarge Storage Requirements
- Ultralow Motion-to-Photon Delay

CUBIST employs edge caching to solve the problem

- Video-based popularity estimation \rightarrow simplified implementation
- Proactive tile prefetching \rightarrow more cache hit
- Hierarchical cache organization \rightarrow reduced cache node cost
- Bitrate determination: Clients <-> Edge Nodes <-> Servers → better QoE

Limitations and future work

Limitations

- Not applicable to live immersive video streaming
- No consideration of joint caching at multiple edge servers

Future work

- More effective algorithms for tile caching and prefetching, possibly via machine learning
- Coordinated caching at multiple edge servers
- More efficient video coding scheme for transmission
- In-network quality enhancement or even tile generation

Thanks for your attention!