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Short Résumé

▪ Position

– IBM Research - Zurich Laboratory since 1988

▪ Research interests

– performance evaluation

– optimization and control of computer communication networks

– reliability of storage systems

– storage provisioning for Big Data

– cloud infrastructures

– switch architectures

– stochastic systems

▪ Affiliations

– IARIA Fellow

– senior member of IEEE

– IFIP Working Group 6.3

▪ Education

– Ph.D. in Electrical Engineering from Columbia University, New York

– M.S. in Electrical Engineering from Columbia University, New York

– B.S. in Electrical Engineering from the National Technical University of Athens, Greece
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Data Losses in Storage Systems

▪ Storage systems suffer from data losses due to 

– component failures

➢ disk failures

➢ node failures

– media failures

➢ unrecoverable and latent media errors

▪ Reliability enhanced by a large variety of redundancy and recovery schemes

– RAID systems  (Redundant Array of Independent Disks)

– RAID-5: Tolerates one disk failure [Patterson et al. 1988]
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Data Losses in Storage Systems

▪ Storage systems suffer from data losses due to 

– component failures

➢ disk failures

➢ node failures

– media failures

➢ unrecoverable and latent media errors

▪ Reliability enhanced by a large variety of redundancy and recovery schemes

– RAID systems

– RAID-5: Tolerates one disk failure

– RAID-6: Tolerates two disk failures
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Erasure Coded Schemes

▪ User data divided into blocks (symbols) of fixed size

– Complemented with parity symbols

➢ codewords
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▪ (m,l) maximum distance separable (MDS) erasure codes

▪ Any subset of l symbols can be used to reconstruct the codeword

– Replication :  l = 1  and  m = r  

– RAID-5 :       m = l + 1 

– RAID-6 :  m = l + 2

▪ Storage efficiency :   seff = l /m (Code rate) 

D1 D1 Dr
…

…D1 D2 Dl Pl+2D1 D2 Dl
… Pl+1

…D1 D2 Dl D1 D2 Dl
… Pl+1

▪ Google :  Three-way replication (3,1)  seff = 33%   to   Reed-Solomon (9,6)  seff = 66 %

▪ Facebook :  Three-way replication (3,1)  seff = 33%   to   Reed-Solomon (14,10)  seff = 71 %

▪ Microsoft Azure :  Three-way replication (3,1)  seff = 33%   to   LRC (16,12)  seff = 75 %
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Lazy Rebuild Scheme

▪ Erasure coding

– reduction in storage overhead

– improvement of reliability achieved

but

– repair problem

➢ increased network traffic needed to repair data lost

➢ Solution: lazy rebuild

• rebuild process not triggered immediately upon first device failure

• rebuild process delayed until additional device failures occur

✓ reduces recovery bandwidth

✓ keeps the impact on read performance and data durability low

M. Silberstein et al. “Lazy means smart: Reducing repair bandwidth 

costs in erasure-coded distributed storage”, SYSTOR 2014
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Reliability of Erasure Coded Systems

▪ Analytical closed-form expressions for the MTTDL and EAFDL of erasure coded 
systems in the presence of latent errors

I. Iliadis, “Reliability Assessment of Erasure-Coded Storage Systems with Latent Errors”, CTRQ 2021

– General method for obtaining the MTTDL and EAFDL

➢ Most likely path that leads to data loss
• direct path to data loss

OBJECTIVE

To assess system reliability when the lazy rebuild scheme is employed

RESULTS

▪ Theoretical assessment of the effect of lazy rebuild on reliability

▪ Evaluation of MTTDL and EAFDL
– Analytical approach that does not involve Markovian analysis

➢ EAFDL and MTTDL tend to be insensitive to the failure time distributions
• Real-world distributions, such as Weibull and gamma
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Reliability Metrics   – MTTDL  and  EAFDL 

▪ Data loss events documented in practice by Yahoo!, LinkedIn, Facebook and Amazon

– Amazon S3 (Simple Storage Service) is designed to provide 99.999999999% durability of objects over a 
given year 

➢ average annual expected loss of a fraction of 10-11 of the data stored in the system

▪ Assess the implications of system design choices on the

– frequency of data loss events

➢ Mean Time to Data Loss (MTTDL) 

– amount of data lost

➢ Expected Annual Fraction of Data Loss (EAFDL)
I. Iliadis and V. Venkatesan, 

“Expected Annual Fraction of Data Loss as a Metric for Data Storage Reliability”, MASCOTS 2014

– These two metrics provide a useful profile of the magnitude and frequency of data losses
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Non-Markov Analysis for MTTDL and EAFDL 

▪ EAFDL  evaluated in parallel with MTTDL
– r :  Minimum number of device failures that may lead to data loss  ( r = m - l +1 )

– d :  Lazy rebuild threshold  ( 0 ≤ d < m - l )
– e :  Exposure Level: maximum number of symbols that any codeword has lost

– Ti :  Cycles (Fully Operational Periods / Repair Periods)

– PDL :  Probability of data loss during repair period

– Q :  Amount of data lost upon a first-device failure

– U :  Amount of user data stored in a system comprised of n devices

– 1/ :  Mean Time to Failure (MTTF) of a device

➢ MTTDL = σ𝑖 𝐸(𝑇𝑖) =
𝐸(𝑇)

𝑃DL
EAFDL ≈

𝐸(𝑄)

𝐸 𝑇 𝑈

▪ System evolution does not depend only on the latest state, but on the entire path 
➢ underlying models are not semi-Markov
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MTTDL and EAFDL expressions obtained using non-Markov analysis
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Redundancy Placement
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Device Failure and Rebuild Process 
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System Model
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– 1/ :  Mean Time to Failure (MTTF) of a device

• General non-exponential failure distributions

– 1/ :  Time to read (or write) an amount of c data at a rate b from (or to) a device

• 1/ = c / b

➢ Highly reliable devices:  / << 1

D
D

D

…

D
D

D

…

D
D

D

…

D
D

D

… c

b

…

D
D

D

…

D
D

D

…

Group of

devicesC



Zurich Research Laboratory

© 2022 IBM Corporation

Theoretical Results
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– n :  number of storage devices
– k :  group size (number of devices in a group)
– c :  amount of data stored on each device
– (m,l) :  MDS erasure code
– d :  lazy rebuild threshold
– b :  reserved rebuild bandwidth per device
– Bmax :  Maximum network rebuild bandwidth per group of devices
– 1/ :  mean time to failure of a storage device
– Ps :  probability of an unrecoverable sector (symbol) error

and                                                   where 
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Numerical Results

– n = 64 :  number of storage devices

– c = 12 TB :  amount of data stored on each device

– s = 512 B :  sector size

– 1/ = 300,000 h :  MTTF

– b = 50 MB/s :  reserved rebuild bandwidth

➢ 1/ = c/b = 66.7 h :  MTTR

➢ / = 0.0002  1 :  MTTR to MTTF ratio

– m  = 16 :  number of symbols per codeword

– Ps :  P (unrecoverable sector error)

▪ Numerical results for two system configurations

– Declustered placement 

➢ k = n = 64

– Clustered placement

➢ k = 16

• System comprises 4 clustered groups 
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Effect of Latent Errors on MTDDL
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▪ MTTDL decreases monotonically with Ps and exhibits  m − l − d  plateaus

▪ Field measurements show Ps to be in the interval [4.096x10-11, 5x10-9 ]

– MTTDL significantly degraded by the presence of latent errors

▪ Increasing the number of parities (reducing l ) improves reliability by orders of magnitude

▪ Employing lazy rebuild degrades reliability by orders of magnitude

▪ The declustered placement scheme achieves a significantly higher MTTDL than the clustered one
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Effect of Latent Errors on EAFDL
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▪ EAFDL affected at high sector error probabilities

▪ EAFDL unaffected by the presence of latent errors in the region of practical interest

▪ Increasing the number of parities (reducing l ) improves reliability by orders of magnitude

▪ Employing lazy rebuild degrades reliability by orders of magnitude

▪ The declustered placement scheme achieves a significantly lower EAFDL than the clustered one
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Effect of Latent Errors on E(H)
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▪ In the interval [4.096x10-11, 5x10-9 ] of practical importance for Ps

– E(H) significantly degraded by the presence of latent errors

– E(H) not significantly affected by the employment of lazy rebuild
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Summary

▪ Considered effect of the lazy rebuild scheme on the reliability of erasure-coded data 

storage systems

▪ Assessed the MTTDL and EAFDL reliability metrics using a non-Markovian analysis

▪ Derived closed-form expressions for the MTTDL and EAFDL metrics

▪ Demonstrated that system reliability is significantly degraded by the employment of 

the lazy rebuild scheme

▪ Established that the declustered placement scheme offers superior reliability in 

terms of both metrics

▪ Demonstrated that for practical values of unrecoverable sector error probabilities

– MTTDL is adversely affected by the presence of latent errors

– EAFDL is practically unaffected by the presence of latent errors

Future Work

▪ The reliability evaluation of erasure-coded systems when device failures, as well as 

unrecoverable latent errors are correlated

Effect of Lazy Rebuild on Reliability of Erasure-Coded Storage Systems18


