Metamodel and Patterns for Cloud Security and Privacy

Hironori Washizaki
Professor at Waseda University, Tokyo, Japan

washizaki@waseda.jp
Prof. Dr. Hironori Washizaki

• Professor and the Associate Dean of the Research Promotion Division at Waseda University in Tokyo
• Visiting Professor at the National Institute of Informatics
• Outside Directors of SYSTEM INFORMATION and eXmotion
• Research and education projects
 • Leading a large-scale grant at MEXT enPiT-Pro Smart SE
 • Leading framework team of JST MIRAI eAI project
• Professional contributions
 • IARIA Fellow
 • IEEE Computer Society Vice President for Professional and Educational Activities
 • Editorial Board Member of MDPI Education Sciences
 • Steering Committee Member of the IEEE Conference on Software Engineering Education and Training (CSEE&T)
 • Associate Editor of IEEE Transactions on Emerging Topics in Computing
 • Advisory Committee Member of the IEEE-CS COMPSAC
 • Steering Committee Member of Asia-Pacific Software Engineering Conference (APSEC)
 • Convener of ISO/IEC/JTC1 SC7/WG20
Metamodel and Patterns for Cloud Security and Privacy

Hironori Washizaki
Professor at Waseda University, Tokyo, Japan

washizaki@waseda.jp http://www.washi.cs.waseda.ac.jp/

Agenda

• Paradigm shifts in new software engineering
• Pattern language
• Security patterns
• Metamodel and Patterns for Cloud Security and Privacy
What is software engineering?

• “Application of systematic, disciplined, quantifiable approach to development, operation, and maintenance of software” – SWEBOK 2014

• Guide to the Software Engineering Body of Knowledge (SWEBOK)

- Software Requirements
- Software Design
- Software Construction
- Software Testing

- Software Maintenance
- Software Configuration Management
- Software Engineering Management
- Software Engineering Process

- Software Engineering Tools and Methods
- Software Quality
- Software Engineering Professional Practice
- Software Engineering Economics

- Computing Foundations
- Mathematical Foundations
- Engineering Foundations
Vision of SWEBOK 2022 (subject to change)

(Evolution lead: Hironori Washizaki, since 2018-)

https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-committee/swebok-evolution

- Expansion of SE
 - AI/Machine Learning Engineering
 - Restructuring foundation areas incl. Internet of Things (IoT)
- Value in SE
 - Value proposition
- Dependable SE
 - Architecture
 - Security
- Modern SE
 - Agile
 - DevOps

Software Engineering

Engineering Foundation incl. IoT

Value proposition

Expansion

Value

AI/ML

Modern

Agile & DevOps

Dependable

Architecture
Paradigm shifts in “new” software engineering

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope and perspective</td>
<td>Software systems</td>
<td>Software systems, business, society and related disciplines</td>
</tr>
<tr>
<td>Process</td>
<td>Planned, static, common, and closed</td>
<td>Adaptive, dynamic, diverse, and open</td>
</tr>
<tr>
<td>Focus</td>
<td>Specification</td>
<td>Value, data, and speed</td>
</tr>
<tr>
<td>Thinking</td>
<td>Cognitive (logical) or affective (design)</td>
<td>Cognitive (logical), affective (design), and conative (conceptual)</td>
</tr>
<tr>
<td>Inference</td>
<td>Deduction and analogy</td>
<td>Deduction, analogy, induction, and abduction</td>
</tr>
</tbody>
</table>

Problem and goal

- Cloud computing is one of the key enablers of digital transformations.
- Security must be a critical cross-cutting concern in cloud and any other software.
- We are conducting systematic literature reviews to reveal landscapes of security patterns and cloud security & privacy.
Agenda

• Paradigm shifts in new software engineering
• Pattern language
• Security patterns
• Metamodel and Patterns for Cloud Security and Privacy
Problem: Needs to have a place where people can sit lazily, legitimately, be on view, and watch the world go by…

Solution: Encourage local cafes to spring up in each neighborhood. Make them intimate places, with several rooms, open to a busy path …

[Image](https://unsplash.com/photos/8IKf54pc3qk) [Image](https://unsplash.com/photos/zACLEreWKXE)
Towards a pattern language

... OK, so, to attract many people to our city, **Small Public Square** should be located in the center. At the **Small Public Square**, make **Street Cafes** be **Opening to the Street** ...
New SE needs pattern (language)!

- **Bridge** between abstract paradigms and concrete cases/tools
 - Verbalizing and documenting Know-Why (context), What (problem) and How (solution)
 - Reusing solutions and problems
 - Getting consistent architecture

- **Common language** among stakeholders
 - Security engineers, software engineers, hardware engineers, network engineers, domain experts, data analystist, …
Agenda

• Paradigm shifts in new software engineering
• Pattern language
• Security patterns
• Metamodel and Patterns for Cloud Security and Privacy
Security concerns must be addressed at any phase

- Patterns are **recurrent problems and solutions** under specific **contexts** from requirements to maintenance.
Example of security pattern

- **Name:** *Role-based access control (RBAC)*
- **Problem:** How do we assign rights to people based on their functions or tasks?
- **Solution:** Assign users to roles and give rights to these roles so they can perform their tasks.
- **Related patterns:** *Authorization, . . .*

![Diagram of security pattern]
Systematic Literature Review of Security Pattern Research

• We categorize and analyze 240 papers to clarify state-of-the-art and future directions of security pattern research in terms of 13 facets including topics and security characteristics.

• E.g., breakdown of research topics

Conclusion and future work

Current

• Targeting authentication and authorization
• Many researches using UML, but independent
• Often simple case studies
• Targeting existing patterns only
• Limited education for secure development methods in IoT era

Future

• Address various security patterns
• Integration based on common metamodel
• Complex case studies with measurements
• New vulnerabilities and patterns
• Cloud, IoT and security education program
Model-driven security pattern application

[PLoP’10]

① Selecting a pattern
② Setting parameters
Input model
③ Transformation by ATL

Parameter

Transformation rules

UML models

Helper def : SubjectName : String = ‘hoge’

rule SubjectClass {
 from s : UML!Class(s.isSbj())
 to t : UML!Class(
 namespace <- s.namespace,
 isAbstract <- false,
 ...
)
}

Example: application of “Authorization”

Helper def: ProtObName: String = ‘Patient’

Authorization

<<Authenticator.Subject>>
<<Authorization.Subject>>
TESEM: Test Driven Secure Modeling Tool

[ARES’13][ARES’13][IJSSE’14][ICST’15][Information’16]

Security Design Pattern

Context
Problem
Solution

Test design as requirement

Test Script

! create Actor
! create UI :
! create Subject..

Test case

[ARES’14] Verification of Implementing Security Design Patterns Using a Test Template, Conf. Availability, Reliability and Security

[Information’16] Implementation Support of Security Design Patterns Using Test Templates, Information 7(2)
Test-driven secure design

- Security Properties are in testcases

- Add test cases
- Confirm tests fail
- Fix model
- Eval. of mitigation
- Confirm tests pass
- Find vulnerability
Add test cases

Verify whether model with RBAC satisfies security design requirements

<table>
<thead>
<tr>
<th>Conditions</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rights are given in “Role” which an “User” belongs</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>consider that “Actor” have access permission.</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>consider that “Actor” does not have access permission.</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>execute “delete” function</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>can not execute “delete” function</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

context subject_controller
inv access_control:
if self.RBAC.Right->exists(p |
 p.right = true and
 p.role_id = p.Role.id and
then
 self.DeleteUI.Actor.right = true and self.subject_function = true
else
 self.DeleteUI.Actor.right = false and self.subject_function = false
endif

Verify whether model satisfies security design requirement
Model does not satisfy **security design requirements.**

TESEM detected incorrect applications of design patterns.
Fix model and confirm tests pass

Fix design model until the tests successfully pass.

Incorrect design ➔ Refactoring ➔ Correct design
Agenda

• Paradigm shifts in new software engineering
• Pattern language
• Security patterns
• Metamodel and Patterns for Cloud Security and Privacy
Challenges in cloud security and privacy (S&P)

- How to consistently utilize diverse S&P knowledge?
 ⇒ Metamodel

- How to consider S&P over different layers?
 ⇒ Layered metamodel

Patterns

Guidelines

Practices

Cloud services

Ex.) User Authentication

Software Application

User Authorization

Platform

Secure Config.

OS Hardening

Infrastructure

Electronic Access Control system
Modeling vulnerability and security pattern

Common Vulnerabilities and Exposures: CVE-2012-4394 Cross-site scripting (XSS) vulnerability in apps/files/js/filelist.js in own Cloud before 4.0.5 allows remote attackers to inject arbitrary web script or HTML via the file parameter.

Validator for data-injection vulnerability such as XSS
Security and privacy development process
Security requirements analysis

- Threats and vulnerability analysis based on STRIDE
- Consider corresponding security patterns (e.g., Authentication and Authorization)

<table>
<thead>
<tr>
<th>Goal</th>
<th>Anti-goal</th>
<th>Problem</th>
<th>Example</th>
<th>Pattern</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamper proof data</td>
<td>Gain ability to tamper with data</td>
<td>unauthorized actors tampering with local data</td>
<td>users accessing local data on their phone, changing their score</td>
<td>Encryption pattern</td>
<td>Provided by the android phone itself: it encrypts stored data</td>
</tr>
<tr>
<td>confidentiality</td>
<td>Gain access to confidential info</td>
<td>unauthorized actors tampering with cloud data</td>
<td>hostile accessing the cloud server to change the goal location to current location</td>
<td>Encryption pattern</td>
<td>Handled by Amazon: their security measures are quite extensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unauthorized actors listening to the transmissions to and from the server</td>
<td>man in the middle attack</td>
<td>Transmission pattern</td>
<td>API automatically uses SSL and can be set to use a VPN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>information disclosure</td>
<td>hostile user releases a list of goal locations</td>
<td>Encryption pattern, Authentication and (architectural solutions: firewall, server layout)</td>
<td>similar to tamper proof data: same solution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>elevation of privilege</td>
<td>a user pretends to be an administrator which gives him unlimited access to all game data</td>
<td>Authentication pattern, (limitation of access), transmission pattern</td>
<td>Player can only get access to the database through software, which is tightly controlled by API</td>
</tr>
</tbody>
</table>
Case study and result

• This table shows the result of a simple case study by assigning a vulnerable system model.
• The experiment group with CSPM perform better by solving more security problems.
Summary

• There are paradigm shifts in “new” software engineering.
 – Cloud computing is one of the key enablers of digital transformations.
 – Security must be a critical cross-cutting concern in cloud and any other software.

• New software engineering needs patterns and pattern languages.
 – Bridge between abstract paradigms and concrete cases/tools
 – Common language among stakeholders

• Security patterns
 – Systematic Literature Review of Security Pattern Research
 – Model-driven security pattern application
 – Test Driven Secure Modeling Tool

• Metamodel and Patterns for Cloud Security and Privacy
 – Cloud Security and Privacy Metamodel (CSPM)
 – Modeling vulnerability and security pattern
 – Security and privacy development process