
1

Introduction Implementation Results Conclusion

Processing Speed Impact of the Pipeline-Length on
a Custom RISC-V CPU for FPGAs

Julian Weihe Timm Bostelmann Sergei Sawitzki

FH Wedel
University of Applied Sciences

Contact: bos@fh-wedel.de

CENICS 2022



2

Introduction Implementation Results Conclusion

Presenter’s Resume

Timm Bostelmann received his
engineer’s degree in computer
engineering from the FH Wedel
(University of Applied Sciences) in
2008. Since then, he is employed at
FH Wedel as a research assistant in
the field of embedded systems.



3

Introduction Implementation Results Conclusion

Google Trends

▶ Popularity by searches for processor architecture "RISC-V".
20

09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

0

20

40

60

80

100

Time/Years

Se
ar

ch
te

rm
po

pu
la

rit
y/

%

RISC-V



4

Introduction Implementation Results Conclusion

Google Trends

▶ Popularity by searches for processor architecture "RISC-V" vs
"x86".

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

0

20

40

60

80

100

Time/Years

Se
ar

ch
te

rm
po

pu
la

rit
y/

% RISC-V
x86



5

Introduction Implementation Results Conclusion

Motivation

▶ Effects of the choice of the number of pipeline stages when
implementing an own RISC-V CPU.

Benchmarking using CoreMark

▶ Developed by EEMBC
▶ Focus on list processing, matrix operations, state machines and

CRC.

Time analysis

▶ Timing Analyzer in Quartus Prime Lite



6

Introduction Implementation Results Conclusion

Hardware: Intel Cyclone 10LP 10CL025 FPGA

▶ 25000 Logic Elements
▶ 594 Kb embedded Memory (M9K)
▶ 12 MHz external clock

trenz electronic: CYC1000



7

Introduction Implementation Results Conclusion

CPU environment

Memory
CPU

SoC
inst_addr

data_addr

data_wren

leds

txrx

clk

rst

inst

data

▶ Peripherals are mapped in the memory.
▶ The implementation of the CPU is independent of the memory.



8

Introduction Implementation Results Conclusion

Pipeline stages

Five-stage CPU

1. IF - Instruction Fetch
2. ID - Instruction Decode
3. EX - Execution
4. MA - Memory Access
5. WB - Write Back

Two-stage CPU

1. IF/ID/EX
2. MA/WB

▶ Two stages are always needed due to the clock controlled data
memory access.



9

Introduction Implementation Results Conclusion

Five-stage pipeline CPU

rs1_addr rs1_data rs2_data

rs1_data

imm

imm

imm

pc

pc

op_l

imm

instr

rd_addr rd_addrrs1_addr, rs2_addr, rd_addr

IDIF EX MA WB

pc

pc

pc_next

rs2_addr rs2_data

alu_res alu_res

jmp_addrj
m
p
_
a
d
d
r

addr

jmp

j
m
p

op_r

i
n
s
t
r
_
r
a
w

rd_addr

rd_data

Reg
Mem
Data

Mem
Instr

Alu

Comp

sext

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

Decode_imm

Decode_instr

data

m
e
m
_
d
a
t
a

+4

▶ Implementation of rv32i-ISA.



10

Introduction Implementation Results Conclusion

Two-Stages pipeline CPU

rs1_addr rs1_data rs2_data

rs1_data

imm

imm

imm

pc

pc

op_l

imm

instr

rd_addr rd_addrrs1_addr, rs2_addr, rd_addr

IF/ID/EX MA/WB

pcpc

pc_next

rs2_addr rs2_data

alu_res alu_res

jmp_addrj
m
p
_
a
d
d
r

addr

jmp

j
m
p

op_r

i
n
s
t
r
_
r
a
w

rd_addr

rd_data

Reg Data
Mem

Mem
Instr

Alu

Comp

sext

M
u
x

M
u
x

M
u
x

M
u
x

Decode_imm

Decode_instr

data

m
e
m
_
d
a
t
a

+4

M
u
x

▶ Implementation of rv32i-ISA.
▶ Names of the combined stages and structure were taken from

the five-stage pipeline CPU.



11

Introduction Implementation Results Conclusion

Jump Instruction Problem

IF

#2 #1

#3 (jmp) #2 #1

#E1 #3 (jmp) #2 #1

#E2 #E1 #3 (jmp) #2 #1

#3 (jmp) #2

#3 (jmp)#4

ID EX MA WB

#5 #4

▶ The jump is registered in the execution stage.
▶ Instructions that have been read in until this stage are discarded.



12

Introduction Implementation Results Conclusion

Read Memory Instruction Problem

IF

#3

#2 (lw)

#1

#4

#4

#3 #1

#4

#3

#3

#3

#3

#4

#4

#2 (lw)

#2 (lw) #1

#2 (lw)

ID EX MA WB

▶ The Load Word (LW) instruction needs another clock to get the
result from the memory.

▶ A stall-instruction is inserted if the following instruction requires
the memory data.



13

Introduction Implementation Results Conclusion

Comparisons

CoreMark Score

▶ Instructions per clock cycle
▶ Maximum clock speed
▶ Calculation of CoreMark-Score:

ScoreIterations / Sec =
Iterations · Frequency

TicksTotal

Space requirement of the additional pipeline stages on FPGA

▶ Number of additional Logic Blocks
▶ Number of additional Register



14

Introduction Implementation Results Conclusion

Coremark Scores

Stages Frequency / MHz Iterations Ticks Score

2 12.000 200 203629411 11,786

2 39.670 200 203629411 38,963

5 12.000 200 247103108 9,7125

5 67.380 200 247103108 54,536

two-stage pipeline CPU

▶ 21 % more instruction per clock circle

five-stage pipeline CPU

▶ 70 % higher clock frequency
▶ 40 % higher CoreMark score



15

Introduction Implementation Results Conclusion

Used space on FPGA

Stages Optimization mode Logic Elements Register

2 Balanced 4566 1344

2 Performance 4769 1577

5 Balanced 4821 1670

5 Performance 5009 1833

Comparison with Performande Optimization

▶ 1.1 % more Logic Elements
▶ 1.2 % more Register



16

Introduction Implementation Results Conclusion

Conclusion

▶ Jumps and memory accesses lead to miscalculations and reduce
processing speed (only affects the five-stage CPU).

▶ Due to the miscalculations, it can no longer be assumed that an
instruction is processed in every clock cycle.

▶ The five-stage pipeline CPU offers a higher clock frequency
which results in a higher CoreMark score.

▶ The additional space requirement is rather marginal.

Recommendation

▶ For maximum processing speed, the five-stage pipeline CPU is
more recommended.

▶ If super real-time requirements are precise, the two-stage
pipeline CPU can also be interesting.


	Introduction
	

	Implementation
	

	Results
	

	Conclusion
	


