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Google Trends

▶ Popularity by searches for processor architecture "RISC-V".
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Google Trends

▶ Popularity by searches for processor architecture "RISC-V" vs
"x86".
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Motivation

▶ Effects of the choice of the number of pipeline stages when
implementing an own RISC-V CPU.

Benchmarking using CoreMark

▶ Developed by EEMBC
▶ Focus on list processing, matrix operations, state machines and

CRC.

Time analysis

▶ Timing Analyzer in Quartus Prime Lite
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Hardware: Intel Cyclone 10LP 10CL025 FPGA

▶ 25000 Logic Elements
▶ 594 Kb embedded Memory (M9K)
▶ 12 MHz external clock

trenz electronic: CYC1000
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CPU environment

Memory
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▶ Peripherals are mapped in the memory.
▶ The implementation of the CPU is independent of the memory.



8

Introduction Implementation Results Conclusion

Pipeline stages

Five-stage CPU

1. IF - Instruction Fetch
2. ID - Instruction Decode
3. EX - Execution
4. MA - Memory Access
5. WB - Write Back

Two-stage CPU

1. IF/ID/EX
2. MA/WB

▶ Two stages are always needed due to the clock controlled data
memory access.
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Five-stage pipeline CPU
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▶ Implementation of rv32i-ISA.
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Two-Stages pipeline CPU
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▶ Implementation of rv32i-ISA.
▶ Names of the combined stages and structure were taken from

the five-stage pipeline CPU.
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Jump Instruction Problem

IF
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▶ The jump is registered in the execution stage.
▶ Instructions that have been read in until this stage are discarded.
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Read Memory Instruction Problem
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▶ The Load Word (LW) instruction needs another clock to get the
result from the memory.

▶ A stall-instruction is inserted if the following instruction requires
the memory data.
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Comparisons

CoreMark Score

▶ Instructions per clock cycle
▶ Maximum clock speed
▶ Calculation of CoreMark-Score:

ScoreIterations / Sec =
Iterations · Frequency

TicksTotal

Space requirement of the additional pipeline stages on FPGA

▶ Number of additional Logic Blocks
▶ Number of additional Register
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Coremark Scores

Stages Frequency / MHz Iterations Ticks Score

2 12.000 200 203629411 11,786

2 39.670 200 203629411 38,963

5 12.000 200 247103108 9,7125

5 67.380 200 247103108 54,536

two-stage pipeline CPU

▶ 21 % more instruction per clock circle

five-stage pipeline CPU

▶ 70 % higher clock frequency
▶ 40 % higher CoreMark score
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Used space on FPGA

Stages Optimization mode Logic Elements Register

2 Balanced 4566 1344

2 Performance 4769 1577

5 Balanced 4821 1670

5 Performance 5009 1833

Comparison with Performande Optimization

▶ 1.1 % more Logic Elements
▶ 1.2 % more Register
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Conclusion

▶ Jumps and memory accesses lead to miscalculations and reduce
processing speed (only affects the five-stage CPU).

▶ Due to the miscalculations, it can no longer be assumed that an
instruction is processed in every clock cycle.

▶ The five-stage pipeline CPU offers a higher clock frequency
which results in a higher CoreMark score.

▶ The additional space requirement is rather marginal.

Recommendation

▶ For maximum processing speed, the five-stage pipeline CPU is
more recommended.

▶ If super real-time requirements are precise, the two-stage
pipeline CPU can also be interesting.
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