

Holistic Approach of ICT-Education

Prof Dr. Juho Mäkiö University of Applied Sciences Emden/Leer, Germany juho.maekioe@hs-emden-leer.de

About me

- More than 20 years experience in ICT teaching
- Professor of Programming in the University of Apllied Sciences Emden/Leer
- Visiting lecturer/professor in a number of universities
- Baden-Württenberg didactic certification in 2003
- STIMEY-Platform
- Coordinator of MaCICT-Project (Erasmus+)
- Partner of Think4Jobs-project

Motivation

Is computer science hard? Short answer—it depends on the student.

(https://www.northcentralcollege.edu/news/2021/03/24/computer-science-hard)

- Why ICT is so hard to study? (Intellectual capabilities, complex topics)
- What can be done to make ICT less harder study without any reduction, i.e. making it easier?

Precondition for any educational process

When is a lecture a good lecture? From the learning perspective...

Why do we teach? How do we teach?

Economic goal of teaching: Efficiency - maximum result in limited time.

Teaching considered as knowledge transfer

Knowledge Transfer: "The effective sharing of ideas, knowledge, or experience between people, companies, or organizations"

Critic: one-way process – interaction aspects included: "knowledge transfer and exchange"

practitioners' and educational professionals' beliefs of knowledge have an effect on our conceptions of education: forms of learning, pedagogy and assessment in the curriculum. (Magrini, 2000)

Lecture. A talk by which the notes of the professor become the notes of the students, without passing through the minds of either.. (Mortimer J. Adler)

Purpose of the education

- The main purpose of education is to provide opportunities for learners
 - to construct knowledge through their own personal experiences and interaction with the outside world,
 - to shape behavior, or to make knowledge meaningful and
 - help learners in organizing new information in their cognitive schemas (Agarhar, 2019).

Conceptualising learning and teaching

- The nature of teaching: Teachers
 - directly instruct their students
 - **teacher-centered** based on instructivism
 - encourage and support students as they learn and construct knowledge for themselves
 - **student-centered** based on constructivism

Teachers' role

- Teachers are among the most powerful influencers in learning.
- Teachers need to be directive, influential, caring, and actively engaged in the passion of teaching and learning.

The use of various tools and methods for teaching

Students point of view: make the studies more interresting, not monotonous; structure the teaching material; ...

Teachers point of view: helpful to create classes; prepare learning materials;...

The quality of education depends on the quality of teachers. (Aktan, Toraman and Orakcı, 2020)

Constructivism

- Theory about human learning (not about teaching!)
- Learners construct knowledge rather than just passively take in information.
 - Cognitive constructivism (Jean Piaget (1983)): learning can only occur to the extent that new information links successfully with a learner's prior knowledge and experience
 - Social constructivism (Lev Vygotsky (1962, 1978) : learning is greatly enhanced by collaborative social interaction and communication – in other words, discussion, feedback and sharing of ideas are powerful influences on learning.

Teaching methods based on constructivism

- Student-centered approach
- Focus primarily on learners playing the active and major role in acquiring information and developing concepts and skills while interacting with their social and physical environment.
- The role of the teacher becomes one of facilitator and supporter, rather than instructor.
- The importance of social interaction, language and communication is recognised in constructivist classrooms and therefore much group activity, discussion and cooperative learning is encouraged.

Examples of constructivistic methods

- Inquiry Based Learning
 - Learners pose their own questions and seek answers to their questions via research and direct observation
- Project Based Learning
 - Students applying course knowledge to produce something
- Problem Based Learning
 - learners acquire knowledge by devising a solution to a rela world problem.
- Cooperative Learning
 - Students work together in small groups, interdependence among group members

Assumption of constructivist rationale

- "Constructivist approached ... require that students are self-motivated, capable of thinking and reasoning, and in possession of sound independent skills." (Westwood, 2008)
- Lessons require eliciting relevant prior knowledge

Critical consideration of constructivist approaches

- Unstructured discovery-type activities where learners must independently acquire or construct essential information are very inefficient. (Construction of misconseptions) (Pressley and McCornmick 1995)
- Students make much better progress when they are taught explicitly and directly (de Lemos 2004; Ellis 2005; Mastropieri et al. 1997).
- How well a learner makes sense of new information (and contributes usefully to collaborative group work) depends greatly on his or her prior knowledge and experience; and these two prerequisites differ greatly from one learner to another. (Westwood 2008)

Outcome-Based Teaching and Learning (OBT)

- Keep in mind:
 - focus on what students are expected to learn and how it becomes measurable through assessment.
 - Various teaching methods and learning activities
- Outcome-based Assessment
 - collection of (most relevant) evidence of student learning based on outcomes
- OBT requires
 - Planning (content+ activities), Assessment, Grades
 Calculation schema

Objectives of ICT Education

- Soft/transferable skills
 - efficient interpersonal communication;
 - critical thinking;
 - flexibility;
 - sterdisciplinary intercultural communicati
 - team-building ceamworking,
 - negotiation, collaboration,
 - project management.

- iplinary skills working. ...
 - Cloud computing. ...
 - Technical support. ...
 - Linux. ...
 - Programming languages. ...
 - User experience (UX) ...
 - Machine learning. ...
 - Quality assurance

How to teach all of these skills at the same time? Teacher-centred / student-centred approaches

Important aspects for successful teaching

- Content
 - Well structured, vizulization, tasks to get away from selective memorizing
- Teaching skills
 - Educators own expertise in teaching and learning skills
 - Presenting and demonstrating key concepts from more than one point and in multiple contexts help in building the knowledge.
 - Different kinds of classroom activities
- Motivation
 - adaptive and flexible learning environment
 - atmosphere is learning oriented and
 - Consideration of students' pre-knowledge and skills, attitudes and beliefs in the new situation.
 - Usefullness of the knowledge and skills for the student
- Interaction
 - Interactive teaching and learning activities that engage students in learning and cognitive development

The importance of students' pre-knowledge

Pre-knowledge

- helps students to bridge a gap between lecturer's expectations and students' knowledge
- help students to develop the integrated knowledge structure
- in interdisciplinary projects: necessary to find out each participants' initial level of knowledge and understanding related to the problem
- Awareness of the pre-knowledge necessary for
 - fruitful interaction in building interdisciplinary knowledge and
 - understanding of the problem.

Perceptional teaching approach

University of Applied Sciences HOCHSCHULE EMDEN-LEER

The Perceptional Approach – A Practical Teaching Philosophy

- The understanding of principles of concept formation is an essential base for teaching (Kurki-Suonio 2011)
 - the individual processes of learning and scientific research are different manifestations of the same process
 - Both processes aim for understanding of the unknown of the natural and social worlds.
 - an individual develops one's own knowledge through different levels of understanding
 - scientific community develops science
 - Common for both processes: the perceptional process of learning: creation of meanings in human mind as perception.
 - perception arises from the interaction between nature and the human mind.
 - Awareness of meaning is the essence of understanding

TEACHING CYBER PHYSICAL SYSTEMS ENGINEERING

USE CASE 1 – Perceptional Approach in teaching ICT

By academy and industry needed skills...

- Soft skills
 - Broad knowledge in multiple areas
 - Communication
 - Understand the need for life-long learning
- Technical skills
 - Physical architecture
 - Software architecture
 - Software development

Industrial projects fail mostly because of lacking social skills!

Issues to consider when teaching CPS

- Interdisciplinary nature of the topic
 - Need to consider knowledge from multiple fields at the same time
 - Soft skills
- Scenario suitable for teaching CPS
 - "education should focus on core ideas and core principals of CPS"
 - Need to be realistic and "industry-like"
 - No theory-overloading of the task
 - Opportunity for designing, communication skills development and teamwork experience
- Need for a practical and holistic approach to teach CPS.

Our Course

Course Topic 1:

Global Distributed Software Development

Course topic 2: Cyber Physical Systems

- Practical relevance of both topics for the industry of today
- Highly complex topics
- In "real life projects" the key success factors:
 - technical and social competencies

Our Course Setting

- We teach:
 - cyber-physical systems related to real industrial setting
 - global software development in a
 - real project
 - "true" environment
 - cross-cultural experience
- The implementation
 - Kick-Off in September 2016 in ITMO
 - Project end: December 2016
 - 10 ECTS credit points (250-300 hours of work)

The guiding idea: learning by doing

Our teaching approach

JAVA PROGRAMMING

Goal

- Filling of the competency gap (academyindustry)
 - Communication skills
 - Collaboration in team
 - Problem-solving ability
 - Critical thinking
 - Leadership
 - Creativity/Innovation

. . .

HOCHSCHULE FMDFN+IFFR

Teaching- what has changed

Originally		Using T-CHAT
Learning outcomes		
Disciplinary competencies: an ability to operate with algorithms and an ability to analyze, design, and implement software		Disciplinary technical competencies and generic competencies (collaboration, communication, problem-solving skills)
Learning activities		
Mixing passive and active phases during lecture, lab assignments	Intuitive understanding by giving multiple discipline-typical examples; Problem-based learning in labs; Project-based learning – 2 projects.	
Assessment		
Summative - final exam	Student feedback after lecture; formative assessment of homework assignments; summative – final exam	
University of Applied Sciences HOCHSCHULE EMDEN • LEER		

