Some Key Challenges and Up-coming Trends for Future Wireless Systems

Dr Karim M. Nasr

K.M.Nasr@gre.ac.uk

Faculty of Engineering and Science University of Greenwich, United Kingdom

Outline

- Drivers and Enablers for future systems
- Evolution of the main KPIs
- A vision and some challenges
- Examples of main research trends and enabling technologies

Drivers and Enablers

Examples of Emerging Applications and Use Cases

- Ultra Reliable Low Latency Communications (URLLC)
- Enhanced Mobile Broadband (eMBB)
- •Massive Machine Type Communications (mMTC)

Example use-cases

- •Industry 4.0, Factories of the Future
- •E-health and remote surgery
- •Smart cities
- •Co-operative mobile robots
- •Internet of Things and of Everything (IoT/IoE)

Evolution of Main KPIs

A Vision for 6G

- Higher data rates (capacity and throughput improvement).
- Improved spectrum efficiency (bps/Hz/m²).
- Enhanced end user Quality of Experience (QoE) with a wide variety of requirements including traditional Quality of Service (QoS) requirements, reliability, security and others.
- Reduced end to end latency.
- Seamless and improved coverage and mobility.
- Lower energy consumption / improved energy efficiency (Green radios).

Main Challenges

Efficient use of spectrum

- Innovation in spectrum efficiency & spectrum management
- Densification of spectrum sharing, particularly at lower frequencies.

Widespread coverage

- Prevent the "digital divide"
- Contribute to improved health, social care and future transportation systems.

Seamless connectivity

- Achieving a "network of networks", Internet of Everything (IoE)
- In addition to ensuring security and resilience

Energy efficiency

• Net Zero targets and optimisation of energy consumption

Economic viability and resilience

• Enabling new service possibilities and/or significant cost savings

Main Governing Equation

Shannon Equation: Upper bound capacity for error free transmission through a communication channel.

$$C = B \log_2 (1 + S/N)$$

- C = capacity (in bit/s)
- B = bandwidth of channel (Hz)
- S = signal power (in W)
- N = noise power (in W)

Two main factors B and SNR

Main factor to increase capacity (Linear effect and mainly at network level) Logarithmic trend (mainly at component level)

Examples of Main Research Trends

(1) Bandwidth Enhancement

- Spectrum sharing and the use of higher frequency bands (use of THz, integration of visible light, fibre and satellite communication systems)
- New network architectures relying on dense small cells managed through Artificial Intelligence (AI) or machine learning techniques.

Examples of Main Research Trends

(2) SNR Enhancement

- New RF transceiver designs and new electronic components/subsystems targeting performance enhancement of the whole system.
- Massive MIMO
- New materials for RF engineering applications.

A Look at the Spectrum: towards 6G

•Use of opportunistic, dynamically accessed spectrum to improve the overall utilisation leading to economic benefits.

- How to manage interference / thousands of users/devices operating in different bands simultaneously and achieve smart spectrum management?
- Cognitive radio/ Software Defined Radios (SDR) and spectrum sensing

Some Enabling Technologies

Expectations and Features	Enabling Technologies and Trends
Capacity and throughput improvement , high data rate (~1000x of throughput improvement over 4G, cell data rate ~10 Gbps, reduced signalling overheads)	Spectrum reuse and multiband/multi technology operation (from UHF to mm-wave/visible light communication bands), Heterogeneous / multi-tier networks , small cells Multi RAT RRM/ C-RAN , SON Massive-MIMO, new air interface for spectral efficiency
Reduced latency (2~5 milliseconds end-to-end latencies)	Multi RAT RRM/ C-RAN , SON, D2D communication, Full- duplex communication
Network densification: Ultra Dense Networks (~1000x higher mobile data per unit area, 100~10000x higher number of connecting devices/users)	Heterogeneous / multi-tier networks , small cells Multi RAT RRM/ C-RAN, SON, Seamless operation
Advanced services and applications (e.g., smart city, service-oriented communication, IoT)	Multi RAT RRM/ C-RAN, SON network virtualization, M2M communication
Improved energy efficiency /green radios (~10x prolonged battery life)	Wireless charging, energy harvesting Multi RAT RRM/ C-RAN , SON
Autonomous applications and network management, Internet of Things Dr	SON/ cognitive networks M2M/ D2D communication Karim M. Nasr

- An effective approach to high capacity provision under limited spectrum resources is to densely deploy small cellular base stations.
- Serving hard to reach users at the edge of coverage.
- Requires intelligent interference management and radio resource management techniques.

Dense Small Cells

- The deployment of small cells (pico and femto cells) is usually done in a decentralised plug and play fashion.
- Reduces the need for busy hour capacity in the macro network layer.
- Improves indoor and outdoor coverage and reduces overall network power consumption (improves energy efficiency)
- Provides several folds capacity increase is the areas of high demand, and reduces the service provider overall network CAPEX and OPEX costs.

Challenges for Dense Small Cells Deployment

Network Complexity Management

- Traffic load balancing problems between macro cell and the small cell tiers or among small cells.
- Mobility management.
- Backhaul congestion management issues.
- Self Organising Network (SON) Techniques

Spectrum and Radio Access Management

- Physical and medium access control layers issues such as
 - Co-tier and cross-tier interference mitigation
 - Intelligent Radio Resource Management (RRM) / SON Techniques
 - Cognitive Radio / Dynamic Spectrum Access (DSA)
 - Delivering reliable QoS as well as reducing signalling overhead in a dynamic radio network/environment

Energy Efficiency

• Intelligently control the number of activated cells based on the dynamics of user traffic, as well as maintaining adequate QoS and capacity

Self Organising Networks (SON): The Need

- Very large number of small cells/devices to be deployed.
- Manual processes for configuration and optimisation are no longer practical/feasible
- Dynamic deployment requires quick and frequent adaptation
- Continuous adjustments of parameters during operation based on actual measurements and KPIs

Advantages

- Keeping operational effort at an acceptable level/ ideally eliminate user intervention.
- Protecting network operation by reducing the probability of errors
- Speeding up the planning, configuration, management, optimisation and healing of mobile communications networks.

Self Organising Networks (SON)

- Artificial intelligence and machine learning approaches
- Load balancing across multiple cells in a network, how to associate users to a cell/base station?

SON Main Architectures

Distributed SON (D-SON)

- Small scale short term techniques
- Reacts to problems such as handover failures (time scales of seconds)
- Performed locally based on information exchanged between neighbours
- Centralised SON (C-SON)
 - Large scale and longer term techniques
 - Jointly adjust parameters of an entire cluster of cells to daily traffic variations
 - Requires some central coordination to improve overall network capacity based on long term average values
- Hybrid SON (H-SON)
 - A mix of D-SON and C-SON

Some Open Research Questions

- Signalling overheads, Latency constraints and backhaul constraints
- Complexity and implementation issues
- Energy efficiency
- Multi RAT operation
- Context awareness solutions /prediction of user behaviour

Examples of SNR Enhancement Techniques

- Improving power amplifier linearity
- Multiband power amplification
- Advanced antenna/ filtenna designs and cognitive array techniques.
- Metamaterials and IRS

Some Sources of Non-Linearities and Noise

Transmitter

OFDM System

Amplifier linearisation techniques and Multiband operation

Mobile Receiver Complexity

As we move towards 6G, the filtering requirements will only get more challenging (more bands, higher frequencies)
New electronic materials e.g. GaN and new structures

Massive MIMO versus Cell free Massive MIMO

- Exploiting the spatial domain , separating users by location/angle: SDMA versus FDMA, TDMA, CDMA
- How to select/adapt beams dynamically in realtime to serve intended users?

 An alternative approach is to distribute the antennas from the base station array across the cell in a distributed antenna system (DAS)
 –while still combining signals at the base station as in a collocated antenna array

Cognitive array processing

Conventional MIMO Transceiver

•How to design the individual components while reducing their number, complexity and improving energy efficiency?

• Filtennas, compact reconfigurable antennas and filters Direct RF sampling, multiband amplification

Metamaterials

 Composite materials in which the constituents are designed and spatially arranged through a rational design-led approach to change the manner in which electromagnetic, acoustic or vibrational energy interacts with the material.

• Achieve a property or performance which is not possible naturally.

Metamaterials

• Driving the design of new components

Example Applications:

- Making antennas more compact
- •Reducing the weight of systems
- Making systems conformal
- Improving efficiency
- •Broad-band or Multi frequency response
- •Bespoke directivity, and radiation patterns

Reconfigurable Intelligent Reflective Surfaces (IRS)

• Control the reflective properties of a surface, hence controlling the channel (or the environment) using metamaterials.

Reconfigurable Intelligent Reflective Surfaces (IRS)

- Create intelligent propagation environments using metasurfaces.
- The environment acts as part of the wireless system itself, as opposed to an external (often hostile) player.
- Energy efficiency compared to relay nodes.
- Can be deployed in buildings as windows or glass panes without impacting the aesthetics of the infrastructure.

Open Research Issues for Radiowave Propagation

- Measurements and models for the newly introduced higher frequency bands.
- Electromagnetic characterisation of materials at higher frequencies.
- Development of new propagation prediction tools taking into account:
 - Multiband operation
 - Newly introduced concepts such as IRS and multiple antennas at the two ends of the link
 - Models targeting new applications and services:
 - e.g. industrial/ mMTC, vehicular (V2X), high speed trains, e-health applications and integrating the human body (BAN)

Additional Technologies/Techniques

- New waveforms for multiple access: Non orthogonal and spectrum efficient signals (SEFDM/NOMA versus OFDM/OFDMA)
- Full duplex systems and distributed processing.
- Integration of fibre and satellite systems (rural and hard to reach area coverage)
- THz and VLC (Visible light) communication systems.

Thank you for your attention!

Contact details: Dr Karim M. Nasr K.M.Nasr@gre.ac.uk