Automated Visual Verification of Avionics Cockpit Displays

M. Onur Güngör^{1,2} and Gökhan İnce²

¹ MGEO Test and Verification Directorate, ASELSAN Inc, Ankara, Turkey ² Faculty of Computer and Informatics Engineering, Istanbul Technical University, Istanbul, Turkey

> M. Onur Güngör mogungor@aselsan.com.tr

M. Onur Güngör

- M. Onur Güngör will receive the master's degree in Computer Science from the Istanbul Technical University in 2022. He is a expert software verification engineer in ASELSAN Inc since 2017. Leading the BSP & Driver test case development team. Providing test development infrastructure in accordance with avionics standards.
- Interests
 - Artificial Intelligence, Embedded Systems, Avionics

- 1. Background of Visual Verification
- 2. Problem Definition
- 3. Automated Visual Verification
- 4. Experiments and Results
- 5. Conclusion and Future Works

1. Background of Visual Verification

- 2. Problem Definition
- 3. Automated Visual Verification
- 4. Experiments and Results
- 5. Conclusion and Future Works

Visual Verification of Avionics Cockpit Displays

 Foreground and Background Colour Verification: Is the background colour of the Altitude Label is YELLOW and foreground colour of the Altitude Label is BLACK?

• **Text Verification:** Is the text of the rolling counter is 160?

• **Object Verification:** Is the Aircraft symbology visible in the center of the HSI area?

All of the contents on the page should be verified according to software requirements.

- 1. Background of Visual Verification
- **2. Problem Definition**
- 3. Automated Visual Verification
- 4. Experiments and Results
- 5. Conclusion and Future Works

Problem Definition

 Visual verification test cases are usually performed by manual comparison of the values on the display systems with the expected values.

- Increase the Scope of Testing
- CI/CD and DevOps Implementation
- More Accurate Tests

- High Cost: More Time and Resource
- Prone to Human Error: Less Accuracy

- The purpose of the study is to design a system to **automate the visual verification** of avionics cockpit displays using digital cameras.
- It is possible to **take a screenshot** of the cockpit display system **using a digital camera**.
- Calibrating the position of the DSLR camera using Image Registration.

- 1. Background of Visual Verification
- 2. Problem Definition
- 3. Automated Visual Verification
- 4. Experiments and Results
- 5. Conclusion and Future Works

Automated Visual Verification System

Screen Capturing

- Two ways for getting the screenshot of the cockpit display system:
 - Through the screen buffer of the graphics card:
 - Software Level: It is a destructive method while considering a real-time system.
 - Hardware Level: It is not time and cost efficient while considering different hardware architectures.
 - Taking the photo of cockpit display system via DSLR camera.
 - Use image registration technique for position calibration.
 - Consequent image processing techniques for color calibration.

Four steps of Image Registration

Transformation

- Calibration Tool is used to match common points on reference image (rendered image of cockpit 2D CAD model) and captured image.
- The mapping function is used to **calculate transformed** image using equations given below:

$$x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}}$$
 and $y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}$,

where **x'** and **y'** are the **new x and y coordinate** of the given pixel and h_{ij} corresponds to the element of the transformation matrix in row i and column j.

Screenshot Partitioning with ROIs (Region of Interests)

- ROI Manager application is used for partitioning the pages of the Cockpit Display System.
- These partitions (ROIs) are used while developing automated test cases.
- Using the ROIs within the test cases allows the test cases to be run again without modification in case of position changes in that region.

aselsan

ROI Manager

ADI

HSI

HDG

OFF

CRS

RALT

25/05/2022

Automated Visual Verification of Avionics Cockpit Displays

Ground Truth Generation

- Ground truth image is needed for symbology and object verification.
- Outputs of cockpit display design tools were used to produce ground truth images.

Comparison Techniques

• Text Compare:

- Reading the ROI field using Optical Character Recognition (OCR) techniques.
- Tesseract is used for OCR.
- Performance **improvement using parameters**: number of lines, language, white list characters, etc.

Object Compare

• Object or symbology in the ROI field is compared with ground truth image by using **Template Matching** algorithm.

Color Compare

• Support Vector Machine (SVM) is used for color classification.

- 1. Background of Visual Verification
- 2. Problem Definition
- 3. Automated Visual Verification
- 4. Experiments and Results
- 5. Conclusion and Future Works

Recognition Performance Experiments

- Dataset Created using Cockpit Display Pages
 - 208 Text ROI created.
 TERRAIN RALT
 160 W025 ESENBO
 - 6 Object ROI created.

• The texts of 200 out of 208 ROIs were correctly recognized.

• Text sizes of 190 out of 208 ROIs were correctly recognized.

Colour Classification

- SVM Model trained with 786432 pixels
- The accuracy of foreground color detection is 0.40865
 - Not an acceptable F1 score due to the anti-aliasing
- The accuracy of background color detection is 0.81731

FOREGROUND COLOR RECOGNITION

Color	TP	TN	FP	FN	F_1
Amber	5	208	0	0	1
Black	45	126	7	30	0.71
Dark Gray	116	54	30	8	0.80
Red	2	206	0	0	1
White	2	206	0	0	1

BACKGROUND COLOR RECOGNITION

Color	TP	TN	FP	FN	F_1
Amber	0	177	0	31	0
Black	0	199	2	9	0
Brown	0	170	38	0	0
Cloud	0	146	62	0	0
Cyan	0	206	0	2	0
Gray	0	177	2	31	0
Green	0	193	0	15	0
Light Blue	0	207	1	0	0
Magenta	0	207	0	1	0
Red	2	169	4	33	0.10
White	83	106	18	1	0.90

Object Recognition

• The average of the normalized cross-correlation for objects are 0.943.

Config5

• The normalized cross-correlation for each object and each config:

IMAGE CONFIGURATION

Object	C1	C ₂	C3	C4	C ₅
Plane	0.86	0.86	0.93	0.84	0.84
Arrow	0.94	0.93	0.93	0.94	0.94
Stop	0.98	0.98	0.98	0.98	0.98
Compass	0.96	0.95	0.96	0.96	0.96
Plane	0.96	0.96	0.96	0.96	0.96
Target	0.97	0.92	0.96	0.97	0.96

Configuration	AV	TV	ISO
Config1	3.5	30	100
Config2	3.5	30	200
Config3	3.5	50	200
Config4	4.0	25	100
Config5	4.5	25	100

Usability Experiments

- The usability of the system was measured with the SUS questions directed to **13 testers at different experience** levels.
- The participants were given 3 different types of tasks to perform using all the test tools in the system.
- These tasks are;
 - **1. Camera Calibration**
 - 2. ROI Identification and Ground Truth Generation
 - 3. Developing and Executing a Test Case with Defined ROIs and Ground Truths

Usability Experiments

- 3 questions were asked about the:
 - Difficulty of the task
 - Adequacy of time
 - Adequacy of the technical support they received.
- The averages of the answers for each task are given in Figure below

• The SUS score of the system is 71.92.

- 1. Background of Visual Verification
- 2. Problem Definition
- 3. Automated Visual Verification
- 4. Experiments and Results
- 5. Conclusion and Future Works

- **Perform automated visual verification** for cockpit display systems using camera.
- Captured images have been transformed using the **image registration** technique.
- The cockpit screen has been successfully partitioned into regions.
- Ground Truth Generator tool is used to generate ground truth image.

Future Works

- Color recognition should be improved.
 - Especially text foreground color recognition
- The SUS score should be increased

Thank you for your attention

Automated Visual Verification of Avionics Cockpit Displays

M. Onur Güngör^{1,2} and Gökhan İnce²

¹ MGEO Test and Verification Directorate, ASELSAN Inc, Ankara, Turkey ² Faculty of Computer and Informatics Engineering, Istanbul Technical University, Istanbul, Turkey

> M. Onur Güngör mogungor@aselsan.com.tr

25/05/2022