

Wireless Signal-based Human Activity Recognition using Deep Learning

Young-Joo Suh

Graduate School of Artificial Intelligence POSTECH

Human Activity Recognition (HAR)

HAR : "A form of human-computer interaction (HCI)"

Why Wi-Fi-based HAR?

	Vision-based	Wi-Fi-based		
Coverage	line-of-sight of the camera	range of the Wi-Fi signal		
Hardware Requirements	camera, light source, computer	Wi-Fi APs, computer (may already exist)		
Lighting Requirements	visible lights	_		
Privacy	quite risky	pretty good (only carries small information of the room)		
	Visible light Line-of-Sight (LoS) *privacy-threatening*	((m)) Wi-Fi signal Non LoS (NLoS) OK *privacy-preserving*		

Channel State Information (CSI)

In Wi-Fi-based HAR, CSI is extracted from Wi-Fi signals

Channel A route that signal propagates

• Channel affects signal in two ways

Amplitude Attenuation

: Reduction in the strength

Phase Shift

: Multi-path effects and Doppler effects

t

Channel State Information (CSI)

Channel State

- Degree of distortions that occurred in signals on a channel
- Estimated by WLAN processor to revert received signal to the original one

<IQ diagram of QAM>

Mathematical Expression of Channel Effects

Channel varies by the signal frequency and time

 Channel state can be expressed as a matrix whose columns and rows represent the Tx and Rx antennas

Wi-Fi-based HAR Meets Deep Learning

CSI has high usability as an input of deep learning model

- CSI data can be trained for various applications including
 - Fire detection, smoke detection
 - Head noding (sleep) detection, breathing detection
 - People counting, Home security
 - Hand gesture recognition, human activity recognition

HAR USING WIRELESS SIGNAL PT. 1

Human Activity Recognition

To cope with generalization problem

Challenges to Wi-Fi-based HAR

High Environmental & Personal Dependency

- Everything on the signal propagation path affects Wi-Fi CSI
 - Signals are scattered, attenuated, reflected and refracted
 - Multipath and mobility of transceivers induce phase shift
- Each person has different personal behavioral habits
 - Traind model might include personal habits of experiment participants

Channel Congestion

- CSI can be extracted only when medium access is available (i.e., sending packets)
- Stable and periodic CSI measurement is hard on congested channels

Channel congestion is often occurred when too many devices try to send a lot of packets

How To Cope With Environmental Dependency

Domain adaptation (DA) is a typical method to get rid of some dependency It is hard to collect good quality data a lot for unsupervised DA Instead, trying few-shot DA may more powerful

- Unsupervised DA requires a huge amount of data
- Few-shot DA uses small labeled data, without big performance degradation

<Aligned Feature Space By DA Type>

Aligned by Few-Shot DA

How To Avoid Band Congestion

Adding more Tx-Rx antenna pairs of different channels not only gets over the packet bursts but has the effect of using wider bandwidth

- CSI data from all pairs would share common properties of human activities
- This multi-view CSI fusion will effectively help extract essential features

<Multi-View Feature Training>

HAR Model Design

<Data Collection>

HAR Evaluation Results

Offline Evaluation Results

Single View	Source Only	CORAL (UDA)	Transfer Learning		Domain Adaptation	
			1-Shot	4-Shot	1-Shot	4-Shot
Source Accuracy	97.9%	91.6%	89.5%	88.5%	94.8%	96.9%
Target Accuracy	49.0%	30.2%	60.3%	81.4%	63.7%	88.1%

Impacts of Multi View Training

Training Methods	Source Only		1-Shot DA		4-Shot DA	
	Single View	Multi View	Single View	Multi View	Single View	Multi View
Source Accuracy	97.9%	95.8%	94.8%	95.8%	96.9%	96.9%
Target Accuracy	49.0%	60.4%	63.7%	70.9%	88.1%	90.3%

HAR USING WIRELESS SIGNAL PT. 2

Fall Detection

Towards real-time Wi-Fi-based HAR application

Fall Detection

Fall detection is one of the applications of CSI data **Especially important matter for elderly person living alone**

¹∕₃ Elders Experience Fall

1∕₃ of over-65 experience a fall once a year [1]

Pupulation Aging

The number of elders will be doubled in 10y [2]

Fall: Top Medical Accident

49.7% of medical accidents are fall [3]

- No prevention available other than exercising and continuous monitoring
- Fast follow-up diagnosis and cure is important to minimize sequellaes

→ <u>Highly accreditable real-time detection</u> of fall is required

Analyzing Fall CSI To Reduce Model

• Too many factors such as SFO, CFO change phase shift angle

Amplitude on fall

Amplitude of a subcarrier during fall

Phase shift on fall

Phase shift of a subcarrier during fall

- Even after frequency offset removal in WLAN processor, there are still remaining phase shifts
- According to the t-SNE analysis result, phase shift and its trained hidden features were hard to use for activity classification/detection

→ It's more efficient to use only amplitude information

Designing Fall Detection System

Dataset

System Architecture

Fall Detection Demonstration

Fall Detection Performance

Control Variables

- Packets-per-second (PPS) : 100 PPS (19.2kbps) or 400 PPS (76.8kbps)
- LSTM stack level : 2 LSTM (double) or 3 LSTM (triple)
- Got high F1 score of 0.9329 in 5.5 seconds, with very light model

Actual Result

Non-Fall

False Positive (FP)

True Negative (TN)

Fall

True Positive (TP)

False Negative (FN)

<Alarm Delay Analysis>

<Performance>

Prediction

Fall

Non-Fall

Conclusion

- Due to the increasing use of mobile devices HAR using wireless signals is actively studied
- Wireless signals based HAR has many advantages over other HAR techniques including camera-based HAR
- HAR technology with deep learning techniques may increase the detection performance

Thank you for listening

End of document.

