Optimal Multi-Robot Path Planning for Trash Pick and Drop in Hospitals

Ratan Lal and Rehaman Naguru Abdur

Northwest Missouri State University School of Computer Science and Information Systems

June 29

Motivation

MIT Robot Gardener

Cucumber Harvester

Spray Robot

Waste Removal Robot

Waste Removal Robot

Environment

Hospital Environment

Environment: consists of the following:

- * A set of robots' initial location;
- * A set of all trash bags' location;
- * A set of all big containers' location;
- * A set of valid line segments with their length;

Task: consists of the following:

- * A trash bag's location;
- * A big container's location;

Pick and Drop Problem

Hospital Environment

Problem: Find a plan for the robots such that

- * all pick and drop tasks have been completed
- ** the total distance (time, energy) travelled is minimized*

Broad Approach

Traveling Salesman Problem

Traveling Salesman Problem (TSP): Given a collection of cities and the distances between each pair of cities, what is the shortest possible route for a salesman such that he/she visits all the cities and returns to the starting city?

- Given a complete graph with weights on the edges, find the shortest path starting and ending at the same vertex which visits every vertex exactly once.
- * It is an NP-complete problem.
- Can be reduced to solving an Mixed Integer Linear Programming (MILP) Problem

Traveling salesman plan

Multiple Traveling Salesman Problem (mTSP): Given a collection of cities, the distances between each pair of cities and a depot where m salesmen are located, what are the routes for each salesmen such that the total route is shortest, and each city is visited exactly once by only one salesman?

Environment

Hospital Environment

Weighted Graph

Weighted Graph: consists of the following:

- * *Vertices are all the end points of line segments;*
- * Edges are all the line segments;
- * *Manhattan distance is considered for the length of an edge;*

Weighted Graph

Weighted Graph

Task-based Weighted Graph

Note: Some big containers may need to be visited more than one.

Task-based Weighted Graph for MTS

- * *Create k-1 copies of a big container if k tasks share the same big container;*
- * Add all incoming and outgoing edges associated with the big container for all copied containers;

Mixed Integer Linear Programming for mTSP

- * Consider weighted graph G = (V, E, c).
- Vertex 1 denotes a common place.
- * c(I, j) is the distance between i and j.
- * x(i,j) denotes whether edge (i,j) is included in the plan.
 - Minimize

$$\sum_{i,j\in E} c(i,j)x(i,j)$$

Constraints:

* Guarantee that exactly m robots depart from common place, that is,

$$\sum_{\mathbf{l},j)\in E} x(1,j) = m$$

* Guarantee that exactly m robots return to the common place, that is,

$$\sum_{(j,1)\in E} x(j,1) = m$$

* Guarantee that exactly one sub plan visits each vertex, that is,

$$\sum_{(i,j)\in E} x(i,j) = 1, \ \forall \ j \in V/\{1\}$$

Mixed Integer Linear Programming for mTSP

* Guarantee that exactly one sub plan exits from each vertex, that is,

$$\sum_{(i,j)\in E} x(i,j) = 1, \ \forall \ i \in V/\{1\}$$

* Guarantee that there is no sub plan between vertices (Miller-Tucker-Zemlin),

$$u_i - u_j + n \cdot x(i, j) \le n - 1, \ \forall \ 2 \le i \ne j \le n$$

$$u_i, u_j \in \mathbb{Z}$$
, *n* be the number of vertices.

$$u_{I_1} - u_{I_3} + n \le n - 1$$
$$u_{I_3} - u_{I_2} + n \le n - 1$$
$$u_{I_2} - u_{I_1} + n \le n - 1$$
$$3n \le 3n - 3$$

Optimal Paths

Link: https://drive.google.com/file/d/1__J3wNeJH_qnE0pTWYnmXXBsM4DpFac_/ view?usp=sharing

Experimental Analysis

Conclusion

Results:

- * Presented optimal multi-robot path planning for the trash pick and drop problem
- Presented task-based graph approach
- Performed the experiments for different number of tasks in small, medium, and large hospital
- * The experimental results show that the approach is scalable

Future Works:

- Extend our method for complex tasks
- Consider multi-objectives