Identifying Significant Parameters of the US Bridges

by

Prasad Chetti

School of CSIS

Northwest Missouri State University

Maryville, MO, USA

Email: pchetti@unomaha.edu

&

Hesham Ali

College of Information Science and Technology UNO, Omaha, NE, USA Email: hali@unomaha.edu

Outline

- Introduction
- Motivation
- Tests Conducted
- Current Results

Introduction

- Federal Highway Administration (FHWA) maintains National Bridge Inventory (NBI) database, where more than 600,000 U.S. bridges' data is stored
- The American Society for Civil Engineers (ASCE) gave a C+ grade (mediocre) to US' bridges in 2017
- Public safety and economic growth are two key motivation factors for any government to well maintain the bridges

Introduction

- Weather conditions are different in various climatic regions
- Manpower and budget constraints are the two major shortfalls
- Need of new big-data analysis techniques to visualize and to gain the new insights of existing bridge data

• Weather conditions are different in various climatic regions

• US is geographically divided into six climatic regions

Motivation

• Why some bridges deteriorate faster than others?

• Do material or design or region have significant effect on the deck condition rating?

Various condition Ratings

Condition Rating	Description
9	Excellent condition
8	Very good condition
7	Good condition
6	Satisfactory condition
5	Fair condition
4	Poor condition
3	Serious condition
2	Critical condition
1	Imminent failure condition
0	Failed condition

Tests Conducted

• Kruskal-Wallis Test

• Wilcoxon Test

Parameters Considered

• Dependent Parameter: Deck Rating

• Independent Parameters: Material, Design, and Region

Hypotheses Tested

1. The null and alternate hypotheses on materials is given below.

H0: The means of deck condition ratings of all material types are equal

Ha: The means are not equal

2. The null and alternate hypotheses on designs is given below.

H0: The means of deck condition ratings of all design types are equal

Ha: The means are not equal

3. The null and alternate hypotheses on regions is given below.

H0: The means of deck condition ratings of all regions are equal

Ha: The means are not equal

4. The null and alternate hypotheses on material * design * region is given below.

H0: The means of deck condition ratings of all

material*design*region are equal

Ha: The means are not equal

PC at α = 0.05 for the MaterialType on Deck Ratings

Results

PC at α = 0.05 for the DesignType on Deck Ratings

HighPlains (6.84) Midwestern (7.04) \times Midwestern (7.04) Northeast (6.51) Northeast (6.51) Southeast (7.01) \times \times Southeast (7.01) Southern (6.88) \times \times \times Southern (6.88) \times Western (6.71)

PC at α = 0.05 for the Region on Deck Ratings

- Material has significant effect on the deck condition rating
- Design has significant effect on the deck condition ratings
- Region has significant effect on the deck condition ratings
- Interaction of all the three independent parameters has the significant effect on the deck condition ratings

• bridges made of concrete material with stringer multi-beam girder design that reside in the Highplains region perform the worst, whereas the prestressed concrete bridges with the same design that reside in the same region perform the best.

• Similarly, prestressed concrete bridges with stringer multibeam-girder design that reside in the Southern region are also performing the best after 27 years

