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1. Operational structure for transportation systems

and signal control systems overview
3 —Layered Structure for Transportation Systems

Global Traffic
Operational

Control Layer Traffic Operational Control Information ﬂOW
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Available data:
O Data from fixed sensors such as probe detector, intersection camera images
O Moving data such as the data provided by individual vehicles



| 1.2 Intersection Control Basics

s Road Networks
= Junctions/Cameras
= Traffic Lights

Traffic flow distribution = smooth and energy savings
as widely required objectives



1.2 Intersection Control Basics

Figure 4-4 Standard ring-and-barrier diagram
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Table 5-1. Relationship between intersection operation and control type.

Application

interchanges

Highway operations

Pre-timed Actuated
Type of - - -
- Isolated Coordinated Semi-Actuated Fully-Actuated
Operation
Fixed
Cycle Yes Yes Mo Mo Yes
Length
Where traffic is Where defaulting to one Where detection is provided
Conditions ||\Where consistent, closely mowvement is desirable, major on all approaches iEulated Arterial where traffic is
Where detection is ||spaced intersections, and |[road is posted <40 mph and . @pp ’ heavy and adjacent
" N N ) . locations where posted speed || )
Applicable |[not available |[where cross street is cross road carries light traffic is =40 mph intersections are nearby
consistent demand P
Locations without nearby
Example Work Zones Central business districts, signals; rural, high speed

locations; intersection of two
arterials

Suburban arterial

operational

Temporary . . Lower arterial delay,
: N . . Responsive to changing traffic . N .
application Predictable operations, . ; " potential reduction in
Key . Lower cost for highway patterns, efficient allocation of
. keeps lowest cost of eguipment . - delay for the system,
Benefit ) N maintenance green time, reduced delay and
signals and maintenance

improwved safety

depending on the
settings
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Source(USDOT: Traffic Signal Timing Manual)



https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter5.htm#5.2
https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter4.htm

| 1.2 Intersection Control Basics — Pretimed Control

Pretimed (Fixed) timing control

« The duration and sequence of the phases “green” vs “red” and
A " are fixed regardless of the actual traffic conditions,

« The actual timing and cycle are designed based upon historic
traffic data in line with the traffic demand at different times of
the day (TOD).

Disadvantage: An open loop control infrastructure that cannot
cope with real-time variable traffic flow.




1.2 Intersection Control Basics — Adaptive Control

Adaptive timing control

NN\

“green” vs “red” and * " signs WEMR

cycle at road intersections are tuned E L _ E:
adaptively using the measurements of 7" i SN\
the real-time approaching traffic flow o ]

. . o;ftiiﬁa'}ir__e’s?;‘:ﬁ:{is — .
near intersections Operator 110

On-line computer

Advantage: Can cope with variable g 1 General framework on adaptive signal contro
traffic conditions systems (SCOOT)*

*Hunt, P.B., Robertson, D.I., Bretherton, R.D. and Royle, M.C., 1982. The SCOOT on-line
traffic signal optimisation technique. T7raffic Engineering & Control, 23(4)



Example 1. Adaptive LQR Control in Smart Mobility 1.0

Objective: Using green timing with fixed cycle to smooth traffic flows over the network

Downtown Bellevue street network

« Grid road system 1w A e’
» 7 x5, 35 intersections —TJ l Lr_ & o' & ’
« 57 bi-directional road links o o o ] E

Traffic Data — —

» Provided by the City of Bellevue I r o o o &

25 || 587 | | 121
« Road geometrics (e.g., length, number of lanes) o " o
« Traffic count by movement at each intersection e . el 3o O__[
during midday off-peak period (1 — 2 PM) in 2017 - 90 9 600
(a) Traffic count data (b) Road network and traffic

volume
.‘_&QOAK RIDGE

National Laboratory




Example 1. Adaptive LQR Control in Smart Mobility 1.0

) . ] Actual 35 intersection
i ObJeCt|Ve. network (Fig. 1)
Real data | Calibrated data
Using green timing with uk) [ VISSIM nonlincar V) - efk)
. system model (1) = p—~
flxed CYCIe 1'0 SmOth calibrated with real data +
traffic flows over the 1 Sk
Estimation to model (6) -
network 3 via (13) - (17)
QU
S g /D A(k), B(k)
50 h o y
= = Pretimed =+= Actuated == Max Pressure *+*** Linear II_(\QR/l‘| \ I' \\'/ \\ - _a g Adaptive LQR dcsign
g s e ol o S S (19) - (20) using
g O = {AK). B(k)}
g 20 I’ "ll-“\l -,‘\I >, ’ /Z. 2 /‘\\- p o J
1 ,-g;'/:’E"*"" NG i AN e, W T u(k) = - K(k)y(k)
I |

Simulation time (s)

Publications: Two long papers in JEEE Transactions on Intelligent
Transportation Systems, 2020
¥ 04K RIDGE One Keynote talk at an International Conference, one IEEE Conf

(c) Initial N-S green time = 60s




1.3 Advanced Traffic Signal Control — Connectivity via Communications

« Advanced traffic control with Connected and Autonomous Vehicles (CAVs)
— (1) Actuated traffic signal enhanced using CAVs data
= Estimate aggregated traffic measures (traffic volume, queue)
= Loop detector (inaccurate and limited spatially) + CAV data
= Light computation burden
= (Day and Bullock, 2016; Goodall et al., 2013)
— (2) Platoon-based signal control
«  Group individual vehicles to platoons
« Allow the platoons to pass the intersections without severe interruptions
- Traffic prediction on mid-level traffic flow states (e.g., volume, arrival time of platoon)
« Light computation burden — group vehicle into platoons
« May generate sub-optimal signal plans due to the simplicity
« (Heetal, 2012; Pandit et al., 2013)
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1.3 Advanced Traffic Signal Control — Connectivity via Communications

» Advanced traffic control with CAVs
— 3) Planning-based signal control
= Detailed trajectories of individual vehicle — better describe the real traffic conditions

= Predict trajectories and arrival time of each vehicle & predict traffic states in a
forward time horizon

= More accurate and complex
— 4) Transit priority control based on CAVs
= Multimodal traffic control = Special case of planning-based signal control
= Aims to reduce delay of public transit by phase extension/insertion
= May disrupt normal traffic progressions
=  First-come-first-serve strategy to resolve conflicting requests

%0AK RIDGE
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i 1.4 Traffic Flow Modelling at Intersections

Plan to be controlled
Input: Traffic signals (“green” vs “red” and * " signs);

Output: Traffic flow represented by travel delays, queue length,
etc;

Modelling: Establish relationship between inputs and outputs

13



1.4 Traffic Flow Modelling at Intersections

O First principle modelling =) basic flow dynamics and balance

[ Data driven modelling ==) detector/camera data and machine
learning to obtain the traffic flow models

O Semi-physical modelling ==) Combination of the first principle
modelling with data driven modelling (Wang, 1997)*

*H. Wang and A. Afouxenidis, "A new approach for semi-physical modelling for unknown dynamic systems", Proc. of the IEEE
Singapore, International Symposium, 1997.
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1.4 Traffic Flow Model — Nonlinear and Stochastic Nature

Traffic flow can be modeled as stochastic distribution

*Lighthill, M. J., G. B. Whitham. 1955. A

process US|ng klnematlc wave theory*’ theory of traffic flow on long crowded

roads. Proc. Roy. Soc. A229 317-345.

g(x, 1) = V%D Ok(x,) 0¢(x.t) o w(q,x)= 0k(q,x)/0q

N (L) 4 X w(g, X): The average speed
Flow g and density k at equation
a point in space x and e

time t, N: Vehicle count !

g ; : density
K@ K K@ £
. hypocritical : hypercritical o
Ak®(q) flow states  flow states Ak'(g)
-~ N T = Example of traffic flow, density, and speed relationship. (Image source:

**Gentile, Guido. "The General Link Transmission Model for dynamic network
loading and a comparison with the DUE algorithm." New developments in
transport planning: advances in Dynamic Traffic Assignment 178 (2010): 153

Picture from www.google.com
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1.4 Traffic Flow Model — Nonlinear and Stochastic Nature

= With control inputs as the distribution of the traffic lights (red = -
green), the above model can be expressed as

ok(x,t) N ok (X, t)w(x,1t)
ot OX

Time in Green
u(t)=| Time In Yellow

Time In Red

= Bu(t) + noise(x,t)

= Systems are nonlinear and unknown
= Systems are subjected to random input noises, where control should be performed
using neural networks and Al-approaches

16



2. Neural Network Based Approaches — Current Situation
and Challenges

+

This belongs to adaptive timing control — intelligent traffic signal control

In forming intelligent traffic signal control strategies, the following has
been used:

O Fuzzy systems,

O Artificial neural networks,

O Evolutionary computing,

a Swarm intelligence,

O Reinforcement learning, and

O Adaptive dynamic programming

17



2.1 Fuzzy Logic - Fuzzy-Neuro for Traffic Signal Control

« Wei and Zhang (2002)
« Input : Queue length & # of vehicles on each approach

« Qutput: Proportion of vehicle passing through the stop line.

« Fuzzy NN: fO =y
I i
« Layer 1: crisp input and output
« Layer 2: Trapezoidal membership _‘m =ﬁf."’
- Layer 3: Rule layer : ‘e
« Layer 4: Output-linguistic layer

« Gradient descent method to minimize error of y.

Fig. 2: Fuzzy neural network structure

3 OAK RIDGE
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2.1 Fuzzy Logic - Fuzzy-Neuro for Traffic Signal Control

Start
- Urgent Degree of signal
phases: Fuzzy set in Fig. 4 B I o »
provide analogy to human g e e onsan r———
characterization . S5t B :
. Parameter a, b, ¢, d =L i |
describe Trapezoidal shape: o e
Fuzzy NN was used to T T ot i
updated and optimize these —— e
parameters. P, Tempaedn iy cohareig et o i b
Figure 5: The flow chart of decision-making
QAKX RIDCE




2.2 Reinforcement Learning for Traffic Signal Control

« Weietal (2018)

« Reinforcement Learning:

- State: queue, # of vehicles, and waiting time of
each lane, vehicle position, current signal phase.

« Action: change the light to next phase or not.

- Reward: weighted sum of queue, delay, waiting
time, indicator of light switches, # of vehicle, and
travel time.

Reward = wy mZLi + wg aZDi+wgaZWi+
i€l i€l i€l
Wy e C+ws e N+ wg=T.

« Goal: Find an action that maximizes the long-

term reward:

Figure 1: Deep reinforcement learning framework for traffic
light control.

q(st,a,t) = ra, 41 + y max q(sa, ¢+1,2°, 1 + 1)

%0AK RIDGE
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2.2 Reinforcement Learning for Traffic Signal Control

Q-network:
__________!___Q(Ssa)

- Image features: learnt by two Convolutional NN /"*x_

(CNN) layer ;

L -

« Outputs of CNN concatenate with other features Pize 0 00000 =

« Queue J-T!;:_

« Waiting time wﬁ

. Signal phase S5 _F

- # of vehicles i § +
=

« All features are fed into a fully-connected NN | Exrionmen

- Gate control learning process (by phase =0 or 1) Figure 5: Q-network
map reward to action.

3 OAK RIDGE
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2.2 Reinforcement Learning for Traffic Signal Control

Model Framework:

{EQOAK

Offline:
- Set a fixed timetable for the lights

« Let traffic go through the system to
collect data samples

Online;

« Observe state s and take action a
according to e-greedy strategy combinit
exploration and exploitation.

« Get reward r from the environment

« The tuple (s, a, r) will be stored into
memory

RIDGE
1 Laboratory

Traffic condition

+I

Policy

Update

o

‘ Exploit__ Explore

eline
raffic condition

model

1

Replay Mini-batch

gl el g R

B2 | Waiting time (- '

L (5] )

g o o :

Operate light Operate light ai

| = Waiting time g

Feedback
N

Queneleagth 8

!
‘ Feedback

Waiting time {5 Waiting time 5

Figure 4: Model framework




2.3 Probabilistic Graph NNs for Traffic Signal Control - Coordination

« Zhongetal (2021 = @ @———— ———— — — — — — — — —

Signal Cooperatioon

Observ: aﬁon Road Network
| | N - - e % embedding o
« QObjective: minimize travel time of all Aegcgation| /a7 1117 icer

approaches of all intersections

« Probabilistic graph NNs:

1) Graph attention NN module: learn
dependence and importance of

intersections \ﬂ I!
i . t t I L Latent Presentation HM"“ 2 ’*Phases of
NN for embedding features: h! = o(o!W, + b,) e e en  intsetions
Similarity coefficient between t ¢ "
neighboring intersectioniandj; “4 ~ “ (Wshi, Whj) Fig. 1. Overview of the proposed TSC-GNN model.
Influence of all neighboring H! =o(W,- (Zj€M al;(hSW,) + by)).

intersections on intersection i:
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2.3 Probabilistic Graph NNs for Traffic Signal Control - Coordination

« Probabilistic graph NNs:
1) Graph attention NN

2) Graph inference module: learn

latent representation of
intersections considering the
uncertainty of traffic conditions.

3) Q-value prediction module

%0AK RIDGE

ional Laboratory

State: queue, signal phase, # of
vehicles

Action: select a phase

Reward: Queue of approaching
lane minus pressure of
intersection

Signal Cooperatioon Observation Road Network
) ) embedding

Aggregation Panrsl O~ 0—=0 Mo S |
of the product| | '

] Latent Presentation

|_‘_ - FC layers intersections

Fig. 1. Overview of the proposed TSC-GNN model.

L
ﬂl |
I ’*Phasesof



2.4 Representative NN-based Traffic Signal Control Studies

TABLE L. REPRESENTATIVE NN-BASED TRAFFIC SIGNAL CONTROL STUDIES
Reference Method Traffic features Coordination Road Network Int i "
ersections
Wei and Zhang [21] Fuzzy neural network # of vehicles; queue length No communication Synthetic 1
Bingham [22] Neurofuzzy traffic controller # of vehicles; queue length No communication Synthetic |
Srinivasan etal [23] | Tz neural network with Traffic flow; occupancy Distributed control | Real (CBD 25
stochastic approximation theorem with communication Singapore)
Hybrid neural network with .
Choy et al [24] reinforcement learning and Traffic flow: occupancy Digtributed control | Real (CBD 25
. . with communication Singapore)
evolutionary algorithm
Lietal [25] l\;'i‘;;'llg’ased reinforcement Queue length No communication | Synthetic I
Wei et al [26] Yalue-based reinforcement Queue length; # of vehicles; | o o onymication | Synthetic 1
learning waiting time; Image
Value-based reinforcement Real (New
Wei et al [27] learning with max pressure # of vehicles No communication : 16
York City)
control
Chen et al [28] Value-based reinforcement # of vehicles No communication | neal (New 2510
learning York City)
. Graph attention network for " s Real (New
Wei et al [29] cooperation Queue length With communication York City) 196
Zhong et al [30] it e Ovienis leaath # of vehicles. | With commumication Ej;‘lllg - 16
3 OAK RIDGE
National Laboratory




3. Some New Results - Hybrid Neural Network Modeling

%

o Data from Econolite Platform

High resolution data available from the platform
as shown in Fig 2.

e Neural Network Modeling

Use neural networks to model the dynamics of
the intersections for travel delays and signal
timing. The following modeling exercises have
been conducted since Feb 2021:

OAK RIDGE
National Laboratory

Linear (intersection # 4)

Neural Network (intersection # 4)

Hybrid Neural Network 1 (intersection # 4)
Hybrid Neural Network 2 (7 intersections)

Omega United ® 4
States Coast -
Guard Station
old Pali _
Upper Manoa Maunalani t
2.%; Tantalus Puu Valakaa State
A__r' Viayside Park
4
WY - O
o Smlg'\(n'nm‘:b = O
Hauiki Homes = conwmo sy = c Kalakauavi @
0 o ©9¢ @)y - @ %* e
0 €988 9 9Pv > Qq”»p.t &
Kapalama Iwuleu.‘)
a Island Sandif$/Bnd State

Recreation Area

Figure 2. Econolite data and intersectional controls



3. Some New Results - Hybrid Neural Network Modeling
3.1 Obtain High-Resolution Delay Data from Econolite System

S

Event Event
fimestamp code Param
2/1/2021 11:27:30 44 1
2/1/202111:27:31 7 1
2/1/202111:27:31 8 1
2/1/202111:27:31 63 13
2/1/202111:27:33 81 36
2/1/2021 11:27:33 44 5
2/1/202111:27:33 82 37
2/1/2021 11:27:33 7 5
2/1/202111:27:33 ) 5
2/1/2021 11:27:33 63 15
2/1/2021 11:27:33 81 37
2/1/202111:27:35 10 1
2/1/2021 11:27:35 64 13
2/1/202111:27:35 65 13
2/1/2021 11:27:36 0 2
2/1/2021 11:27:36 11 1
2/1/202111:27:36 1 2
2/1/202111:27:36 2 6
2{1/202111:27:36 12 1
2/1/202111:27:36 21 2
2/1/202111:27:37 10 5
2/1/202111:27:37 9 5
2/1/202111:27:37 64 15
2/1/202111:27:37 65 15
2/1/202111:27:38 0 6
2/1/202111:27:38 11 5
2/1/202111:27:38 1 6
2{1/202111:27:38 12 5
A fa fannt 1197090 a1 c

Detector on, Detector id 37
Green off, phase 5

Detector off, Detector id 37
Red clearanceon, phase 1

Departure Pattern

Red clearance off, phase 1 @ 7 Estimated From
Green on, phase 2 T 6 Pulse Detectors
§ 5
- 4-
5 .
£ 3 Area underneathistotal delay.

Arrival Pattern
Estimated From 1

total delay

average delay = # of vehicle

1
T t

0 10 20 30 40 50 60
Time (sec)

+ All events from advanced, stopbar and pulse detectors are extracted as well as
signal timing of all phases.

* Queue length of each phase is estimated to calculate delay.




3.2 Linear System Modeling: Is the System Nonlinear?

Objective: To explore whether the system is Denote

linear or nonlinear o=[7], ot = y (k)
bl u(k)

The intersection 4” is considered with the input

as the green time and output as average per

vehicle delays, denoted respectively as u(k) and

Then the following recursive least squares (RLS)
algorithm is used to estimate {a, b} using the data

y (k). collected from Econolite/UH platform

_ : B P(k)p(k)e(k)
k = sample index once every 5 cycles. 0(k+1) = 6(k)+ 7 ST (OP (k) (K)
The model is assumed to be the 15t order of the T (k) = [y(k) u(k)]

following structure
e(l) =y(k +1) — 6" (k) (k)

y(k +1) = ay(k) + bu(k) + w(k) P~l(k+1) = P71(k) + o(k)p(k)"

where {a, b} are unknown parameters to be

. : : where
estimated, w(k) is a noise. » 0(k) is the estimate of § at sample time k (of every
5 cycles),

» P(k) is the variance matrix,
» ¢&(k) is the estimation residual.



3.2 Linear Model Results — First Order Dynamics

The following figures shows the modeling results, 8(0) = 0, P(0) = 100/,

1

/AL Vil N l. [ | m )'
‘\.NJ Green timing

Original data — normalized to [0, 1]

450

I I

20 40 60 80 100 120 140 160
Validation emror

180

1

09 er"‘—lr"_'_’_—;
Mr Estimated a
0.3 _\‘r}"
2l | Estlmated b
Estimated a and b

s Error

[ probability

°| density

.| function

Validation ermror pdf



3.3 Hybrid Neural Network (HNN) Model —

{EQOAK

Study area: Intersection 1-7

Date: March 3-5, 8-12, 15-19, 22-26, 29-31,
April 1-2 (23 weekdays)

Time: 4pm — 7 pm

Signal phase: all phases of major and minor
streets

Traffic volume: all movements
Delay: all movements

Sample Index: 5 signal cycles (Each cycle
~170s)

RIDGE

1 Laboratory

Multiple Intersections

Dowsett Highlands Upper Manoa Maunalani H
¥ $ ~
e O\ 5/ MakikiHeights' < o
. e oo e R
Kamehameha o - Moiliili
lauiki Homes i e
Heights = plama o Kalakaua Homes

0 ’ ‘@Ilﬂk
DIImghanc\(Q""\Hu m.’!r‘ 3
¥ (‘03“» 0 4

0 Kamehameha
"‘G‘Hon@s ¥

Kapalama

[whlei

@90

Sand Island

Sd OS
aaaaaaaaaaaa

Figure 3. The First 7 intersections along
Nimitz Highway
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3.3 Hybrid NN Model — Data Visualization

Missing data

Delay at Intersection # 7 (2021-03-0.

6 phases:
¢1 ¢2 ¢4 4’8 175

19 9915 37 100
5 ¢6 s

—— Phasel; Avg=137s

Phase2; Avg=>52s
—— Phased; Avg=133s
= Phase5; Avg=132s
= Phase6; Avg=67s
—— PhaseB; Avg=132s

40 78

[System Innovations|
s,

Econoltte Systems.|
peba 40

T T T T T
07:51:00 10:21:00 12:51:00 15:21:00 17:51:00

Green light at Intersection # 7 (2021-03-04)

= Phasel; Avg=Ts
PhaseZ; Avg=127s
—— Phased; Avg=9s
—— Phase5; Avg=29s
—— Phaseb; Avg=105s
—— Phasel; Avg=30s

x/\/—\k M\w\,__/\f‘“u—" B

T
05:21:00

T T T T T
07:51:00 10:21:00 12:51:00 15:21:00 17:51:00

Volume at Intersection # 7 (2021-03-04)

Int. #07
NNIMILZ 100
HIGHWAY AT
ALAKAWA
STREET 50

—— Phasel; Avg=11veh
Phase2; Avg=122veh
= Phased; Avg=8veh
—— Phase5; Avg=51veh
- Phase6; Avg=227veh
—— PhaseB; Avg=53veh

e e e =

OAK RIDGE

National Laboratory

T
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3.3 Hybrid Neural Network (HNN) Modeling — Model Structure

* HNN Model Linear Nonlinear Term

Traffic volume
y(k +1) 5 Ay(k) + Bu(k)|+|f (y(k), u(k — 1), v(kﬁ €)) HNN

where y(k) and u(k) denote average delay per vehicle and green time for multiple intersections at time index
k. w(k) is noise. {A, B} are the weight matrix. Let f(y(k),u(k — 1),v(k)) be approximated and learned by

fy(k),u(k — 1),v(k), ) using the real-time data, and v(k) denote traffic volume.

This is Achieved by minimizing Eq.(3) using gradient approach.
Min J =2 @k + 1) — y(k + 1))? ) Objective

9k +1) = Ay(k) + Bu(k) + f(y(k),u(k — 1),v(k),m) (3)

{A, B, m} are parameters to be trained. m groups all NN weights and bias.

%0AK RIDGE

ional Laboratory




3.3 Hybrid NN - Model Training Algorithm

* Model parameters {A, B, m} are trained simultaneously by (6)-(11):
J
Ak +1) = A(k) - /11 |(A(k)B(k) #(k)) (6) -

B(k+1)=B(k) - /12 |(A(k) 800,200y (7) _ Parameter
update rules

9
itk +1) = fi(k) — A3~ g — | A8, 200 (8)

where 14, 4,, A3 are learning rates.
|(A(k)B(k) 2ty = Gl + 1) =yl + 1)) 2 52 | ooty = @k + 1) =yl + 1)) y(k) (9)
|(A(k)B(k) 2ty = @k +1) —y(k + 1)) |(A(k)B(k) 2ty = @k +1) —y(k + 1)) u(k) (10)
|(A(k)B(k) 2ty = @k +1) —y(k + 1)) |(A(k)B(k) 2(K)) (11)

where y(k+1) is the measured data.

%OAK RIDGE
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3.4 Hybrid NN — Experiment Results

08 Training Error

0.6
=]
Qo 04
o
'_E 02
é_‘f 00 T---
' -02
[
Z -0s
=
-0.6
-0.8 T T T T T T
] 1000 2000 3000 4000 5000
Training Samples of 7 intersections
TABLE 1: Training and Testing Results
Training Testing Testing Testing
(all) (all) (Main streets) (Side streets)
Mean Absolute Percentage 6.31% 6.51% 5.67% 6.98%
Error (MAPE)
Rooted Mean Square Error 9.62 s 10.18 s 414 s 12.33 s
(RMSE)
Mean Absolute Error (MAE) 6.72 s 6.99s [ 3.03s I‘_'[ 9.21 sl
TABLE 2: Testing results at each intersection
Intersection 1 2 3 4 5 6
Mean Absolute 403% 5.09% 57% 7.74% 7.75% 6.74%
Percentage Error (MAPE)
Rooted Mean Square 3.79s 5.74s 10.76s 11.03s 12.61s 8.86s
Error (RMSE)
Mean Absolute Error 229s 436s 6.65s 8.72s 9.18s 6.23s
(MAE)
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vn (k) : True delay at time k of phase n.
v, (k) : Predicted delay at time k of phase n.



3.4 Hybrid Neural Network Modeling — Experiment Results

» Testing: Intersection 1 (March 22 - 26), Total cycle length = 180 (sec)

Comparisons — Testing data — Intersection #1 Phase # 1 Comparisons — Testing data — Intersection #1 Phase # 2
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3.4 Hybrid Neural Network Modeling — Experiment Results

Testing: Intersection 4 (March 22 - 26)

Comparisons — Testing data — Intersection #4 Phase #1

Comparisons — Testing data — Intersection #4 Phase #2
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Comparisons — Testing data — Intersection #4 Phase #3
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3.4 Hybrid NN — Experiment Results
» Testing: Average travel delays at all 7 intersections

Comparisons — Testing data — Intersection #1

Comparisons — Testing data — Intersection #2
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4. Remaining Challenges and Barriers

Most studies on Al for intersectional signal control only consider a few intersections, and no
real-time learning system has been deployed for large-scale field testing because of the lack
of comprehensive real-time data and user-friendly interfaces to the implementation. These
shortcomings have limited the current research on Al for mobility at the simulation level.

Moreover, energy efficiency has not been well addressed for these Al-based modeling and
controls. This constitutes the following challenges and technical barriers:

= Although the theory of Al-based modeling and control for signal control is maturing, the
field testing and closed-loop control implementation for large number of intersections is still
limited because of the insufficient real-time data for fast feedback control realization;

= The existing Al-based modeling for transportation systems cannot yet capture the nonlinear
and dynamic stochastic nature with high reliability and robustness; and

= Guaranteed control performance for the energy minimization is still lacking.

The current project therefore focuses on the development and implementation of real-time
learning and adaptation for the signal control along the arterial, where both NN modeling and
control will be adaptively learned during the real-time system operations.
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5. Traffic Signal Control —the Future

» Future Research
— Network-level control
» Network partition/decomposition, e.g.,~1000 intersections
 Distributed control, hierarchical control
» Al-based traffic signal control with real-world big data

— Impact of CAV penetration and level of automation

* The signal control performance would undergo a significant change when
the penetration rate > 25-30%

» Relationships between CAV penetration and traffic performance

» Quantify the benefits of different levels of vehicle automation levels for
traffic signal control by simulation and real-world tests.
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6. Summary

 Areview of the existing Al based signal control has been described

 New results have been presented

- Complete Al-based modeling for the 7 intersections along Nimitz Highway and Ala Moana
Boulevard arterial with a <10% modeling error as expected.

e Future perspectives
- CAV with V2X communication presents a new solution to signal timing control,

- Big data processing presents further challenges for the real-time implementation of Al-based control
strategies for multiple intersections, especially for a large urban area.

/ Real-time data from Econolite Information Platform
Al Based Modeling
(Task 1) <«— Al Learning
/ Real-time Data from

Objective
@ Smooth traffic flow

Econolite System |« ) Than YOU for
S Actual traffic ﬂow:status yo U r q -I--I-e n II.i o n

Task 3

» Al Based Coordination

Signal Control
@ Energy minimization and Control

(Task 2) Input Actual energy oogsumphon
Task 3 &N
\/ Arterial with 35 intersections
Task 3: Real-time implementation and test

%OAK KRIDGE

National Laboratory




