

Community Interaction Optimization on Twitter for People with Mood Disorders

◎Yuichi Okada, Naoya Ito, Tomoko Yonezawa
M <u>k393424@kansai-u.ac.jp</u>

yone@kansai-u.ac.jp

KANSAI UNIVERSITY

Resume

Yuichi Okada

- Ph.D. student in Informatics
 - Optimization Algorithms
 - Software Development
 - Research on SNS(Twitter)
- President of a tutoring school in Japan
- Freelance programmer

Agenda

Outline of our study and previous works

Overview of the current study

Details of the Proposed System

Computational Experiments and Result

Limitation and Future work

Introduction

Purpose: Optimize Interactions of Twitter Users

- Maximize users' benefits (e.g. knowledge, encouragement, relief)
- Reduce the negative impact on users

Challenging: Solving Combinatorial Problem

- Quantification of user information and tweets
- Mathematical programming model using the knapsack problem

The basis of our system

Obtain optimal interactions using the knapsack problem

The previous work

Optimal Community-Generation Methods for Acquiring Extensive Knowledge on Twitter.

- Optimized the volume and the spread of knowledge
- Verified the effectiveness of our method

Yuichi Okada, Naoya Ito, and Tomoko Yonezawa.

International Conference on Human-Computer Interaction. Springer, Cham, 2021.

Define a feature of each users(Prev. work)

Clustering users (Prev. work)

Scoring the knowledge volume (Prev. work)

$$f_k: \text{Frequency of word[k]}$$

Word Frequency List of a User

Vector of Words

$$Score = \sum_{k=1}^{n} s_k \cdot \log(f_k + 1)$$
(n: size of the word frequency list)

The current work: mental effect

Optimizing SNS connection based on **psychological characteristics**

- Especially for the people with mood disorders
- The method defines the variables
 - Positivity Users based on SNS comments
 - Mood Disorder Level

Define a feature of each users(Cur. work)

http://www.lr.pi.titech.ac.jp/~takamura/pndic_en.html

Negative emotional value

Classification of mood disorder levels(Cur. work)

Scoring users' emotional polarity(Cur. work)

$$Pos(k,m) = \frac{pos_k}{neg_k} \{1.0 + \alpha(n_k - m)\}$$

Our Tentative Emotional Score

- k: index of user
- pos_k : positive value of $user_k$
- neg_k : negative value of $user_k$
- n_k : mood disorder level of $user_k$
- *m*: mood disorder level of the target user
- α : positive constant

Construct a knapsack problem

subject to
$$g_j(x) = \sum_{i \in N} g_1(x_i) \le b_j \quad j = \{1, 2\}$$

$$g_1(x_k) = \begin{cases} 1, member selected in Group k \\ 0, nobody selected \end{cases}$$

 $g_2(x_k) = days \ per \ tweet \ of \ user \ x_k$

Computational experiment

How does the optimal interaction change depending on the features of the user?

- Compared between users who tweet frequently(heavy users) and those who do not(casual users)
- Simulated users with the highest level of mood disorder as the target
- 500 users each for each level of mood disorder, for a total of 2000 users

Result

Heavy Users

-		Lv.0	Lv.1	Lv.2	Lv.3
n-users	20	0.00%	10.00%	10.00%	80.00%
	40	0.00%	5.00%	20.00%	75.00%
	60	0.00%	5.00%	28.33%	66.67%
	80	0.00%	3.75%	37.50%	58.75%

Casual Users

		Lv.0	Lv.1	Lv.2	Lv.3
n-users	20	5.00%	10.00%	35.00%	50.00%
	40	5.00%	20.00%	37.50%	37.50%
	60	8.33%	30.00%	31.67%	30.00%
	80	7.14%	31.43%	31.43%	30.00%

- Heavy users prefer to interact with users with higher mood disorder levels than casual users.
- A similar trend was observed when the α (the weight of the difference in mood disorder levels) was varied.

Discussions

• In case of interactions with heavy users

Do users with high levels of mood disorders prefer to have interactions with users who have similar levels to them?

• In case of interactions with casual users

When having interactions with casual users, is it less influenced by mood disorder level?

• Are these estimations likely to be correct?

Careful consideration needs to be given to whether issues exist in how the data is generated and the hypotheses formulated.

Limitations

Classification of Mood Disorder Levels

More accurate classification should be conducted based on the content of profiles and tweets rather than the value of emotional polarity.

• Evaluation of emotional polarity

Emotional polarity data should be generated for Twitter-specific abbreviations and new words.

Justification of Hypothesis

Does the difference in mood disorder levels between users affect the optimality of interactions?

Can the proposed method have a positive impact on the quality of communication?

- Large-scale investigation of actual data
- Methods for evaluating users' emotional features