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Introduction

Purpose: Optimize Interactions of Twitter Users

 Maximize users' benefits (e.g. knowledge, encouragement, relief)
* Reduce the negative impact on users

Challenging: Solving Combinatorial Problem

* Quantification of user information and tweets
* Mathematical programming model using the knapsack problem



The basis of our system

Obtain optimal interactions using the knapsack problem

Candidate Users Recommended Group
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The previous work

Optimal Community-Generation Methods
for Acquiring Extensive Knowledge on Twitter.

 Optimized the volume and the spread of knowledge
* \Verified the effectiveness of our method

Yuichi Okada, Naoya Ito, and Tomoko Yonezawa.
International Conference on Human-Computer Interaction. Springer, Cham, 2021.



Define a feature of each users(Prev. work)

Get Vector of Word Frequency
Tweets Words List of each Users
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Word Frequency on each Users' Tweet:
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Scoring the knowledge volume (Prev. work)

~
‘ E— fi: Frequency of word[k]

Word Frequency List of a User

Si: Similarity Value of word[k]

. n A
Score = z Sk *log(fx + 1)
k=1
Vector of Words (n: size of the word frequency list)
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The current work: mental effect

Optimizing SNS connection
based on psychological characteristics

* Especially for the people with mood disorders
* The method defines the variables

- Positivity Users based on SNS comments

- Mood Disorder Level



Define a feature of each users(Cur. work)
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Scored Users

Emotional Polarity Dictionary it ol val
¢ ositive emotional value

http://www.Ir.pi.titech.ac.jp/~takamura/pndic_en.html * Negative emotional value



http://www.lr.pi.titech.ac.jp/~takamura/pndic_en.html

Classification of mood disorder levels(Cur. work)
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Tweet Data



Scoring users’ emotional polarity(Cur. work)
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Our Tentative Emotional Score

* k:index of user

* DO0Sy: positive value of users,

* neg: negative value of usery,

* ng: mood disorder level of user

* m: mood disorder level of the target user
* : positive constant



Construct a knapsack problem

maximize 2 Pos(x;, m)

IEN

subject to SEFHIeOR z 91(x) b j={12}
IEN
(x,) = 1, member selected in Group k
J1tk) =, nobody selected

g,(x) = days per tweet of user x



Computational experiment

How does the optimal interaction change
depending on the features of the user?

 Compared between users who tweet frequently(heavy users)
and those who do not(casual users)

e Simulated users with the highest level of mood disorder as
the target

* 500 users each for each level of mood disorder, for a total of
2000 users



Result

Heavy Users Casual Users
Lv.0 Lv.1 Lv.2 Lv.3 Lv.0 Lv.1 Lv.2 Lv.3
20 0.00% 10.00% 10.00% 80.00% 20 5.00% 10.00% 35.00% 50.00%

40 0.00% 5.00% 20.00% 75.00% 40 5.00% 20.00% 37.50% 37.50%
60 0.00% 5.00% 28.33% 66.67% 60 8.33% 30.00% 31.67% 30.00%
80 0.00% 3.75% 37.50% 58.75% 380 7.14% 31.43% 31.43% 30.00%
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* Heavy users prefer to interact with users with higher mood
disorder levels than casual users.

* A similar trend was observed when the a (the weight of the
difference in mood disorder levels) was varied.



Discussions

* In case of interactions with heavy users

Do users with high levels of mood disorders prefer to have interactions
with users who have similar levels to them?

 |n case of interactions with casual users

When having interactions with casual users, is it less influenced by mood
disorder level?

* Are these estimations likely to be correct?

Careful consideration needs to be given to whether issues exist in how the
data is generated and the hypotheses formulated.



Limitations

e C(Classification of Mood Disorder Levels

More accurate classification should be conducted based on the content of
profiles and tweets rather than the value of emotional polarity.

e Evaluation of emotional polarity

Emotional polarity data should be generated for Twitter-specific
abbreviations and new words.

e Justification of Hypothesis

Does the difference in mood disorder levels between users affect the
optimality of interactions?



Future Works

Can the proposed method have a positive impact
on the quality of communication?

* Large-scale investigation of actual data
* Methods for evaluating users' emotional features



