
On the Composability of
Behavior Driven Acceptance Tests

Tugkan Tuglular
Izmir Institute of Technology, Turkey

tugkantuglular@iyte.edu.tr

SOFTENG 2021

Assoc. Prof. Tugkan TUGLULAR, Ph.D.
Izmir Institute of Technology, Turkey

April 2021

Tugkan Tuglular received the B.S., M.S., and Ph.D. degrees in Computer Engineering from Ege
University, Turkey, in 1993, 1995, and 1999.

He worked as a research associate at Purdue University from 1996 to 1998.

He has been with Izmir Institute of Technology since 2000.

After becoming an Assistant Professor at Izmir Institute of Technology, he worked as Chief
Information Officer in the university from 2003-2007.

In addition to his academic duties, he acted as IT advisor to the Rector between 2010-2014.

In 2018, he became an Associate Professor in the Department of Computer Engineering of
the same university.

He has more than 70 publications and an active record of duties with international and
national conferences.

His current research interests include model-based testing and software quality with machine
learning support.

Outline

• Motivation
• Behavior Driven Development (BDD)

• Behavior Driven Acceptance Tests (BDATs)

• Proposed Approach
• Tagged Event Sequence Graphs

• Elimination by Combination for finding missing BDATs

• Evaluation
• E-commerce Software

Behavior Driven Development (BDD)

• Information gap between stakeholders and developers to be reduced.

• The scenarios are written in spoken language.

• Acceptance criteria is more understandable by all team members, e.g.
Product Owners, Testers, UX Designer, Programmers.

• Comes with a structure : Given - When – Then (Gherkin).

Given some initial context (the givens),
When an event occurs,
Then ensure some outcome.

https://dannorth.net/introducing-bdd/#translations

Behavior Driven Acceptance Tests (BDATs)

• ensure that product is usable.

• ensure that product behaves as expected.

• can be utilized in
• User Interface Testing (Mobile, Web)

• Application Programming Interface (API) Testing

Motivation

• By transforming Gherkin clauses written in text to
event-based graph models, we can

• Find missing acceptance tests and

• Incorporate advantages of model-based testing.

Advantages of Model-based Testing
• It starts with specifications by reinforcing the idea that QA

involvement belongs at the beginning of the discovery stage.

• It forces testability into the product design when talking about the
creation of models for a new/modified feature.

• It typically finds design and specification bugs before the code
even exists.

• The automatic test suite generation will increase testing
thoroughness, test coverage is guaranteed, and there is zero test
suite maintenance.

https://saucelabs.com/blog/the-challenges-and-benefits-of-model-based-testing

Model-based Testing Process

• Start by modeling the Software Under Test (SUT)

• Derive test cases from the model

• Execute test cases
• use model as test oracle
• record coverage
• trace to model

• Modify model as needed

• Repeat steps

P. C. Jorgensen, Software Testing: A Craftsman's Approach, 4th Edition, Auerbach Publications, 2013.

Event-based Modeling

• Event Sequence Graphs (Belli, 2001)

• Event-based formal model
• inputs and actions are merged as events and assigned to the vertices

of an event transition graph.

• They can be used for system modeling and test generation.

F. Belli (2001). “Finite-State Testing and Analysis of Graphical User Interfaces”, 12th
International Symposium on Software Reliability Engineering, ISSRE 2001, 34-43.

Advantages of Event-based Modeling

• Testability is dominated by two practical problems
• How to provide the test values to the software
• How to observe the results of test execution

• Controllability
• How easy it is to provide a program with the needed inputs, in terms of

values, operations, and behaviors

• Observability
• How easy it is to observe the behavior of a program in terms of its

outputs, effects on the environment and other hw and sw components

P. Ammann and J. Offutt, Introduction to Software Testing, 2nd Edition, Cambridge University Press, 2016.

Event Sequence Graphs (ESGs)

An event sequence graph ESG = (V, E, X, G) is a
directed graph where

V ≠ ∅ is a finite set of vertices (nodes),

E Í V´V is a finite set of arcs (edges),

X,G Í V are finite sets of distinguished vertices

with x Î X, and γ Î Γ, called entry nodes
and exit nodes.

F. Belli (2001). “Finite-State Testing and Analysis of Graphical User Interfaces”, 12th
International Symposium on Software Reliability Engineering, ISSRE 2001, 34-43.

Event Sequence Graphs (ESGs)

• An ESG with a as entry and b as exit and pseudo vertices [,]

• Each edge marked as a legal event pair (EP).

EPs:

a, b
a, c
b, c
c, b

Event Sequence Graphs (ESGs)

• Complete event sequence (CES) represents a walk through
the ESG.

CES:

3: [, a, c, b,],
4: [, a, b, c, b,],

Event Sequence Graphs (ESGs)

• Faulty (or illegal) event pairs (FEP) are introduced as the edges
of the corresponding ESG
• Faulty CESs (FCESs) constructed using FEPs. FCES:

2: [, a, a,
3: [, a, b, a,
3: [, a, b, b,
3: [, a, c, a,
3: [, a, c, c,
1: [, b,
1: [, c,

Event Sequence Graphs (ESGs)

• Refinement of a vertex v
and its embedding in the
refined ESG

CES:

6: [, x, a, b, c, b, z,],
5: [, x, a, c, b, z,], !

ESG Test Generation

• Input: ESG

• Output: Test set with respect to model-based coverage criterion

• Two objectives for the test case generation procedure:
• generation of CESs,

• generation FCESs from the complement of ESG.

• Test case generation algorithm generates tests that cover both;
• All event pairs in ESG,

• All faulty event pairs of the CESG.

ESG Test Generation Algorithm

F.
 B

el
li,

 N
. N

is
sa

nk
e,

 C
. J

. B
ud

ni
k,

 a
nd

 A
. M

at
hu

r,
“T

es
t g

en
er

at
io

n
us

in
g

 e
ve

nt
 s

eq
ue

nc
e

g
ra

p
hs

”,
Te

ch
ni

ca
l R

ep
o

rt
s

an
d

 W
o

rk
in

g
 P

ap
er

s,
 2

00
5.

k = 2 means

edge (EP)
coverage

k = 3 means

Edge pair (ET)
coverage
…

ESG Tool

http://download.ivknet.de/index.php

State Machines to ESGs

Proposed Approach

• The proposed approach improves completeness of a
BDAT test suite and enables coverage-based test sequence
generation.

• With the assumption that Gherkin clauses can be represented
by events, the proposed approach suggests use of event
sequence graphs (ESGs) for modeling BDATs.

• To model a BDAT as an ESG, ESGs are extended with tags.

Tagged ESG A tagged ESG is an ESG, where a
vertex may contain a tag instead of
an event.

A tagged ESG is used to
represent a BDAT.

Tagged ESG

#shoppingCart tag is used
as a connection point and
then eliminated.

Combining two BDATs on tagged ESG

Finding missing BDATs

• Elimination by Combination for finding missing BDATs

• Once two BDATs are combined using a tag, that tag is eliminated.

• Therefore, all possible tagged scenarios or their graphical
representations, i.e., tagged ESGs, are combined.

• A combined tagged ESG may be combined with another simple
or combined tagged ESG.

• The goal is to reach an ESG without any tags.

Finding missing BDATs

• Elimination by Combination for finding missing BDATs

• After all possible combinations are completed, a tag remained
on a tagged ESG indicates that there is a missing BDAT.

• More than one tag remaining may mean more missing BDATs.

Finding missing BDATs

This BDAT is the only Gherkin scenario that has the tag #orderDetail.

Since there is no match, it indicates that a BDAT that starts with
#orderDetail tag is missing. Complete this missing BDAT as follows:

Evaluation

• Proposed approach is applied to an existing test suite for an e-
commerce software. https://github.com/spriteCloud/ecommerce -cucumber-web-test-
automation-suite

• Existing test suite has 15 BDATs, or scenarios, with 64 Gherkin
clauses. Clause per scenario ratio is 4.26.

• After applying the proposed approach, we end up with 24 BDATs
and 85 Gherkin clauses. There are 9 new scenarios but only 5 of
them are missing scenarios. The other 4 scenarios are introduced to
simplify and standardize some original scenarios. So, clause per
scenario ratio is descended to 3.54.

missing BDAT
by tag left over

missing BDAT
by analysis

Test Sequence by TSD Tool• No. of Nodes: 50

• No. of Edges: 70

• CES with 111 events:

• [, login page is displayed, enter username, enter password, click login button, home page is displayed, go to order list page,
order list page is displayed, click on an order, order details are displayed, press OK button, order list page is displayed, click
home icon, home page is displayed, click shopping cart button, shopping cart page is displayed, click check out button, check
out page is displayed, enter new address, enter new invalid payment, confirm invalid order, "invalid payment" is displayed,
press OK button, check out page is displayed, enter new address, enter new invalid payment, click cancel button, check out
page is displayed, enter new address, enter new valid payment, click cancel button, check out page is displayed, select existing
address, select existing payment, click cancel button, check out page is displayed, enter new address, enter new valid payment,
confirm valid order, "order taken" is displayed, press OK button, order list page is displayed, click home icon, home page is
displayed, enter multiple keyword, click search button, product list page is displayed, select a filter, click filter button, filtered
product list page is displayed, click on a product, product details are displayed, select amount, add to cart, shopping cart page
is displayed, click home icon, home page is displayed, enter single keyword, click search button, product list page is displayed,
click on a product, product details are displayed, click home icon, home page is displayed, select a product list page, product
list page is displayed, click home icon, home page is displayed, click account button, account page is displayed, update
payment, "payment updated" is displayed, press OK button, account page is displayed, update address, "address updated" is
displayed, press OK button, account page is displayed, click home icon, home page is displayed, click shopping cart button,
shopping cart page is displayed, click check out button, check out page is displayed, select existing address, select existing
payment, confirm valid order, "order taken" is displayed, press OK button, order list page is displayed, click home icon, home
page is displayed, select a product list page, product list page is displayed, select a filter, click filter button, filtered product list
page is displayed, click home icon, home page is displayed, click shopping cart button, shopping cart page is displayed, click
check out button, check out page is displayed, click home icon, home page is displayed, click logout button, login page is
displayed, enter username, enter password, click login button, home page is displayed, click logout button,]

Conclusion

• This paper proposes an approach to represent BDATs using ESGs.

• With the proposed approach, the test designer not only finds and
completes missing BDATs but also combines them to know which
BDAT can be executed after which BDAT.

• When the final composition is supplied to the TSD tool, it automatically
generates a test sequence that covers all BDATs.

• So, the proposed approach improves testability of BDATs.

