

Analyzing Safety in Collaborative Cyber-Physical Systems: A Platooning Case Study

Manzoor Hussain, Nazakat Ali, Youngjae Kim, and Jang-Eui Hong

Department of Computer Science, Chungbuk National University

Cheongju, Republic of Korea

hussain@selab.cbnu.ac.kr

He is currently pursuing the Integrated (M.S. leading to Ph.D.) degree with the Department of Computer Science, School of Electrical and Computer Engineering, Chungbuk National University, South Korea. He worked as a Software Developer with GIKI, Pakistan.

Research Interests:

- Software engineering
- Deep learning,
- Cyber-physical systems
- Autonomous system's safety.
- Deep reinforcement learning

Software Engineering Laboratory, Chungbuk National University Korea Intelligent CPS research group

Prof. JANG-EUI HONG (Ph.D.)

Research Interest: *include software quality, embedded software architecture, low-energy software development, and software system safety.*

Dr. NAZAKAT Ali (Ph.D.)

Research Interest: software requirements engineering, data mining, ontology, software architecture, software process improvement, DevOps, software quality, system safety, system of systems, and cyber-physical systems.

YOUNGJAE KIM

Research Interests: Cyber Physical Systems, safety, Simulation, autonomous vehicle, and Platoon driving.

Topics to be discussed

Introduction

- Collaborative Cyber-Physical Systems (CCPS)
 - Controlled, reliable, connected and complex system
 - Collaborate
 - Can perform complex task
- Cyber Physical Systems may face unexpected behavior
 - Unintended behavior of failure free system due to performance limitation
 - Lack of robustness
 - Environmental variabilities
 - Lack of composite hazard analysis
 - Lack of fault traceability
 - Insufficient situational awareness
- Single CPS's safety can be insured by
 - ISO 26262
 - IEC61508

Introduction

- Safety of CCPS becomes challenging tasks
 - Complex, diverse, variable and uncertain operational environment
 - e.g., autonomous platooning system
 - Environmental uncertainties such Fog, rain and snow
 - Infrastructural uncertainties such as black ice on road etc.
 - CCPS are massively interconnected
 - Single fault can activate many other fault in other collaborating systems.
- We present an enhanced fault traceability approach
 - Composite hazard analysis
 - Content relationship among hazard analysis artifacts
 - Fault Tree Analysis (FTA), Failure Mode and Effect Analysis(FMEA) and Event Tree Analysis (ETA)
 - Fault traceability Graphs
 - Fault Traceability and Propagation Graph (FPTG)
 - Fault Propagation Graph (FPG)
 - Fault Back Traceability Graph (FBTG)
 - Case Study: Autonomous Platooning System

Motivation

Introducing the enhanced fault traceability techniques

- Traceability Graphs
 - Single hazard analysis technique is not sufficient for CCPS
 - Composite hazard Analysis of CCPSs
 - Content relationships among hazard analysis artifacts
 - FPTG, FPG, FBTG
 - Fault Route
 - Source of Fault
 - Propagation Scope
 - Impact of fault of on other system
 - Safety guard
- Safety verification of Platooning systems
 - VENTOS Simulator
 - Hazardous scenarios *i.e.*, fog, rain, and black snow

The Seventh International Conference on Advances and Trends in Software Engineering SOFTENG 2021

April 18, 2021 to April 22, 2021 - Porto, Portugal

Composite Hazard Analysis

FTA FMEA

• ETA Content Relationships

Composite Hazard Analysis Technique

Influence Relationship

Inheritance Relationship Overlap Relationship

Supplement Relationship

Related Work

- Ali at el. Presents an approach that can model the uncertainties that a collaborative CPSs may face during their operation. They extended the traditional FTA, FMEA, ETA to model the variabilities and uncertainties in CPSs. [2020]
- Daneth et al. A domain-specific language (CyPhyML+) was to identify the interaction component and their uncertainties in collaborative CPSs.[2019]
 - The primary objective of this approach was to present the safety component and identifying unknown component interaction in CPSs ensuring safety
- Naufal et al. proposed a conceptual framework called A2CPS (autonomous CPSs) aiming to design and implement an autonomous supervision and control system. [2018]
 - Purpose of this approach was to reduce vehicle collision with resilient safety measure at run time
- Medawar et al. discussed the role of the run-time manager in SafeCOP to ensure continuous safety in truck platooning. [2017]
 - The authors first specify the safety contracts based on the safety analysis of the local system as well as the cooperative safety function.
- Zhang et al. proposed a taxonomy that can be translated under the uncertainty of the predictive model. [2016]
 - A self-healing model is proposed to ensure the sustainable safety of the CPSs.

Proposed Approach

Composite Hazard Analysis with CPSTracer

Safety Analysis of Platooning System (A collaborative CPS)

• Platooning System

- The movement of vehicle group collaborates to reduce the inter-vehicle distance and creates synergy. The front vehicle called leader, and the following car called follower.
 - Better usage of road infrastructure i.e., can fit more vehicles on the road
 - Improve energy efficiency by reducing the aerodynamic drag
 - Reduce emission
 - Full consumptions
- However,

Example of Platooning system

- Reducing the inter-vehicle distance also leads to creating safety concerns in vehicles participating in the platooning.
- The safety of collaborative CPSs can be ensured by analyzing the safety of the system considering the potential uncertainties.
 - To identify the potential hazards, analyze the faults, and measurement of possible damage.

Composite Hazard Analysis of Platooning CPS-Fault Tree Analysis

Fault Tree Analysis of The Platooning Systems

The Seventh International Conference on Advances and Trends in Software Engineering SOFTENG 2021

Composite Hazard Analysis of Platooning CPS-Failure Mode Effect Analysis

Project Files	FMEA_0 ×									
 Development Life Cycle 									i	
Overall Definitions	<u>FMEA</u>									
 Safety Analysis 									٩	
▼ 📇 FTA	System: Platooning System Subsystem * Mode/Phase *									
FTA_0										
v_FTA_0	Item	Failure Mode	Ca	sual Factors	Immediate Effect	System Effect	Hazard	Variability Point		
▼ Las FMEA	GPU	Processing time exceeds	Low process	ing powered GPU	Fail to process sensory data	Processing function failure	Unpredictable car movemen	nt View Variability	1	
몶, FMEA_0 몶, v_FMEA_0	Communication Module	V2V Communication Failure	Communica Variability	tional infrastructural	Unable to communicate with member vehicle	Communicational Failure	Delay in platooning operation	on View Variability		
器 v_FMEA_1	Proximity Sensor	Power Supply Failure	Short circuit	at power supply unit	Fail to detect near by car	Proximity Sensor Failure	Collission with front car	View Variability		
▼ 📇 ETA ETA_0	Decission Making Algorithm	Inappropriate Decision	Fail to recog	nize scenario	Wrong Decision	Unpredictable Car Behavior	Collision with obstacles	View Variability		
2 v_ETA_0	Camera Sensor	Detection Failure	Weather Co	ndition	Fail to detect obstacles	Detection Sensor Failure	Collision with obstacles	View Variability		
57 ETA_1 골 SA Trace	Object Localization Algorithm	Wrong prediction of front car pos	ition Limitation o	f Object Localization	Wrong prediction of front car movement	Fail to predict front car position and distance	Collision with front car	View Variability		
응다. FPTG	Software Failure	Unupdated Softwae	Virus/Malwa	ire	Information processing failure	Information processing failure	Car failure	View Variability		
 Safety Requirement Analysis 	Lidar Sensor Failure	Sensor Failure	Weather Co	ndition	Fail to determine obstacles	Lidar Sensor Failure	Car accident	View Variability		
Project Files	FMEA_0 × v_FMEA_0 × v_FM	MEA_1 ×								
▼ Development Life Cycle		<u> </u>							i	
 Overall Definitions 	<u>V_FMEA</u>									
🔻 🋄 Safety Analysis										
▼ 📇 FTA	System: Platooning Syst	em Subsystem * Mo	ode/Phase *					Edit		
FTA_0										
v_FTA_0	March 1994 - A4 (1D)	(•		Failure Cause	Effect	Constitut	Design of the start		
▼ 📇 FMEA	Variability At (ID)	Coponent F	ailure Mode	Variability Poi	nt Variability	Effect	Severity	Recommended Action	Recommended Action	
品 FMEA_0	v_FMEA_0-FMEA_0-FMEA_1 Ca	mera Sensor Detectio	on Failure	Weather Condition	Fog	Crash		Reduce Speed		
<mark>몶</mark> v_FMEA_0					Rain Snow		7 8	Exit Platooning		
ala v_FMEA_1					5104		0			
▼ 📇 ETA U										
ETA_0										
v_ETA_0	Add Remov	e Edit U	Jp Do	wn						

Failure Mode Effect Analysis of The Platooning Systems

Composite Hazard Analysis of Platooning CPS-Failure Mode Effect Analysis

Event Tree Analysis of The Platooning System

The Seventh International Conference on Advances and Trends in Software Engineering SOFTENG 2021

Safety Analysis of Platooning System with FPTG

Fault Propagation Traceability Graph of the Platooning Systems

Safety Analysis of Platooning System with FPG and FBTG

Safety Verification

Speed and inter-vehicle distance for safe scenario

The Seventh International Conference on Advances and Trends in Software Engineering SOFTENG 2021

Conclusion

- Collaborative Cyber-Physical Systems (CCPS)
 - Complex and massively in inter-connected
 - Unexpected behavior in CCPSs may comes due to diverse, variable and uncertain operational environment
- Safety of CCPS is challenging task due to
 - Complex, diverse, variable and uncertain operational environment
 - Environmental uncertainties such Fog, rain and snow
 - Infrastructural uncertainties such as black ice on road etc.
 - CCPS are massively interconnected
 - Single fault can activate many other fault in other collaborating systems.

• We present an enhanced fault traceability approach

- Composite hazard analysis
- Content relationship among hazard analysis artifacts
 - Fault Tree Analysis (FTA), Failure Mode and Effect Analysis(FMEA) and Event Tree Analysis (ETA)
- Fault traceability Graphs
 - Fault Traceability and Propagation Graph (FPTG)
 - Fault Propagation Graph (FPG)
 - Fault Back Traceability Graph (FBTG)
- We verified our approach by analyzing the Autonomous Platooning System in VENTOS Simulations

Questions and Discusion Hussain@selab.cbnu.ac.kr

