

Universidad de Cádiz

Smart Cities: the Challenge of Interoperable Software Architecture

Guadalupe Ortiz, guadalupe.ortiz@uca.es UCASE Software Engineering Research Group, University of Cádiz The Sixteenth International Conference on Internet and Web Applications and Services (ICIW 2021) DataSys 2021Congress Guadalupe Ortiz Bellot Cursos Verano'16, UCLM

Smart Cities: the Challenge of Interoperable Software Architecture

 Guadalupe Ortiz is a permanent Associate Professor in the Department of Computer Science and Engineering, at the University of Cadiz and member of the UCASE Research Group.

Ongoing research projects:

- Smart Healthy Port: Real-Time Big Data Processing for Intelligent Air Quality Management in Sea Ports
- GANGES: Real-time big data processing for smart water network management
- FAME: Formal Modelling and Advanced Testing Methods. Applications to Medicine and Systems
- RCIS: Network in Service Science and Engineering
- Currently, her research focuses on trending topics such as the integration of complex-event processing in service-oriented architectures and facilitating context-awareness in the scope of Internet of Things, Smart Cities and Ambient Assisted Living.

Everything is Smart

Everything is Smart

Smart workspaces

Human-centered

• Facilitating smarter living, working and living experience.

At smart homes

- Devices, sensors, tools and platforms that learn from the way humans use their homes.
- Contextualized and personalized experiences

Smart Workspaces

Smart Health

• Use of smart city tools and infrastructures in the service of health

Aim: to improve health and quality of life

- Information and communication technologies
- Contextual patient information and use of mobile devices

Advantages

Simplify processes and streamline procedures \rightarrow cost reduction Adapting to the patient's context \rightarrow better treatment Prevention of health risks

Smart Health

Interoperability??

Concepts Technologies Architectures Case Studies Conclusion

Concepts Technologies Architectures Case Studies Conclusion

- Internet
- Information Systems
- Cloud
- Social Networks
- Internet of Things

- Social Networks
- Internet of Things
- ...Near real-time

Why small?

- Accessible, understandable and actionable in everyday tasks
- Data mining (batch)

Applications

• Data-driven marketing, CRMs, ...

Distinctive features

- End-user focused → Context
- Data democratization → Collaboration

Context and Context Awareness

(Collaborative) Internet of Things

- A network of globally interconnected and uniquely identified things or objects
- IoT platforms

loT

C-loT

- Individual-Business-Community/Infrastructure
- Multiple domains: health, logistics, energy
- Collaboration at sensor/situation of interest/services level
- Prioritization

Concepts Technologies Architectures Case Studies Conclusion

Service Oriented Architecture and RESTful Web Services

Service Oriented Architecture

Services

- A contract (user benefits).
- Particular **discoverable functionality** describing what it can do and how to interact with it.

Service Oriented Architecture (SOA)

- Software architecture that defines a **decoupled model** of services to support business process requirements.
- They provide functions that can be **reused** by different clients (they only need to know the service description).

RESTful services

- REST: Representational State transfer
- REST is an architectural style for services using web standards.

Advantages

- Light
- Human readable
- Easy to build

REST Communications

- Everything can be identified as a **resource** and each resource can be identified by a **URI**.
- A resource can be represented in **multiple formats**, defined by a **media type**.
- Standard **HTTP methods** are used to interact with the resource: mainly GET, POST, PUT and DELETE.
- Communication between the client and the endpoint is stateless.

Event-Driven Architecture and SOA 2.0

Event-Driven Architecture

Events

- A change in the state of something.
- Something that occurs (or does not occur).
- A **detectable** condition.

Event-Driven Architecture (EDA)

- Particular style of event processing.
- Architectural style in which one or more components of a software system are activated upon detection of an event and where these components are **decoupled**.
- It is based on the **publish/subscribe** mechanism.

Event-Driven Architecture

Publish/Subscribe systems

- Heterogeneity: event generators publish the types of events they offer, and consumers subscribe to them through the interface offered for subscription and receipt of the resulting notifications.
- **Asynchrony**: notifications are sent asynchronously by eventgenerating publishers to all subscribers who are interested in them (decoupled publishers and subscribers).

Comparative SOA/EDA	SOA	EDA
Interaction	Loosely coupled	Decoupled
Cardinality	One-to-One	Many-to-Many
Paradigm	Request/Response	Event/Notification
Communication	Synchronous	Asynchronous

Event-Driven Service Oriented Architectures (SOA 2.0)

ED-SOA or SOA 2.0

- Communications between users, services and applications are event-driven.
- Event-driven communication allows a **faster response** to changes in **real time**.
- Events in the system trigger the launch of system services.

Enterprise Service Bus versus Microservices Architectures

Enterprise Service Bus (ESB)

- Integration element (multi-protocol and multi-purpose) in SOA.
- It combines web services, messaging, transformation, data routing and enrichment, security policies, among others.

Advantages

- They can integrate EDA and SOA.
- Ideal for working in heterogeneous environments: different technologies and protocols: from the most modern to the most conventional (legacy).
- They **reduce** the total **cost** of management and maintenance.

Enterprise Service Bus

Features

- A single application as a set of **small services**.
- Each service runs in its own process.
- Services communicate with lightweight mechanisms (REST API over HTTP).
- Deployment is independent.
- There is hardly any centralized management.

Advantages

- \checkmark Scalability, evolution, maintenance
- Security, consistency, data traffic

Microservice Architectures

Internet of Things

Features

- It proposes the use of a network of **globally interconnected things** or objects uniquely identified through an address scheme.
- Very present in Smart World
- Several computational layers:
 - Cloud computing
 - Fog computing
 - Edge computing

Complex Event Processing

Complex Event Processing (CEP)

- Technology that allows **processing**, **analysing and correlating** large quantities of events.
- To detect and respond in real time to critical or relevant business situations.
- Event patterns will infer new, more complex events ("situations") with greater semantic meaning.

Advantages

- Improved quality of decisions.
- Rapid response.
- Prevention of information overload.
- Reduction of human effort.

Complex Event Processing

CARED-SOA Architecture

DOI: 10.1109/ACCESS.2017.2679338

COLLECT Architecture (Overview)

DOI: 10.1016/j.eswa.2017.05.034

COLLECT Architecture (fog node)

DOI: 10.1016/j.eswa.2017.05.034

Predictive CARED-SOA

DOI: 10.1109/ACCESS.2019.2960516

Concepts Technologies Architectures Case Studies Conclusion

Air4People (Motivation)

Meeting World Health Organization air quality guidelines could prevent 2.1 million deaths per year

DOI: 10.3217/jucs-024-07-0846

Air4People (Architecture)

DOI: 10.3217/jucs-024-07-0846

Air4People (Screenshots)

DOI: 10.3217/jucs-024-07-0846

SWAT (Motivation)

SWAT (Software Architecture)

SWAT (Prototype)

SWAT (Hardware Architecture)

AlergiApp (Motivación)

26/18 2 21/16 21/18 2 26/15 2

DOI: 10.1007/s11042-021-10759-6

AlergiApp (Architecture)

DOI: 10.1007/s11042-021-10759-6

AlergiApp (Screenshots)

	1:59 🗊 🕩 💵		♀ •□•
AlergiApp		Mi perfil	
₩ Graminea	s	ALERTA	AS SÍN
18-11-2017 Estación: Cadiz		livo 🌮	
Nivel medio		Nivel med Cádiz	dio (64.0 granos/m3)
50,00 granos/m3		Olivo Nivel bajo Cádiz	o (12.0 granos/m3)
Medidas anteriores		W/ Gramin	eas
Olivo 200,00 granos/m3	18-11-2017	Nivel alto Grazalem	(55.0 granos/m3) Ia
Estación: Cadiz			
Parietaria 20,00 granos/m3	18-11-2017		
Estación: Cadiz			
nicio Mi p	erfil Ajustes	Înicio) Mi perfil

¿Cómo te	sientes h	oy?	
::			
Selecciona	a tus sínt	omas	
Respirato- rios	Cutáneos do algún		Digestive
	-		
	GUAF	RDAR	

•🗇 🗘 🖬 🗘 •

SÍNTOMAS

20-02-2017

16-02-2017

10-02-2017

Ajustes

DOI: 10.1007/s11042-021-10759-6

Concepts Technologies Architectures Case Studies Conclusion

E-Health domain Sustainability Energy consumption Natural resources management Mobility Traffic Pollution Emergencies Economy Governance Security Wellness

Endless Case Studies and Application Domains

•••

SMART CITIES require INTEROPERABILITY

Technologies

Software Architectures

All parties Collaboration

Smart Cities: the Challenge of Interoperable Software Architecture

- Thank-you very much for your attention
- Guadalupe Ortiz, UCASE Software Engineering Group
- guadalupe.ortiz@uca.es

