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Abstract—This position paper provides a high-level overview of
recent trends in the research landscape that portend of new
opportunities in medical and healthcare engineering. These
trends arise from myriad resources potentiated by the
Internet, in particular the current emphasis on open-source
software contributions, both in well-designed toolkits and
GitHub repositories, and the emergence of high-throughput
techniques based on graphical processor units on the hardware
side and on deep neural networks on the algorithmic side.
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I. INTRODUCTION

Medical and healthcare (M&H) simulation span a
variety of areas where medicine converges with Modeling
and Simulation (M&S). Computer-based medical simulation
emphasizes the application of computers to synthesizing the
response of tissues to therapy, which represents a trade-off
between fidelity to real tissue response and computational
efficiency. High-fidelity medical/surgical simulation is
typically used to provide experienced clinicians, including
surgeons, with insight on how to optimize treatment of the
patient, while high-efficiency simulation emphasizes real-
time interactivity for haptics, typically used in conjunction
with Virtual Reality (VR) visualization for skill acquisition
and training.

In both cases, a computer visualization of the anatomy is
needed, however in the interactive case based on VR, this
visualization must be also responsive in real-time, which
presupposes highly efficient therapy models (e.g., cutting
models) as well as relatively sparse anatomical models and
collision models, where the latter determines where the
therapy takes place, in conjunction with the pose of the
haptic device. A related research area is the segmentation of
medical images that map intensities to tissues and
discretization (meshing) that converts tissues to elements.

Healthcare simulation is used to denote two areas that
complement the above-described medical simulation. One
the one hand, it is used to designate mannequin-based
training systems and part-trainers, whose physical
implementation is intended to develop proprioceptive
understanding of therapies. On the other, this term also
represents medical processes at a large scale, such as
emergency rooms, and hospitals, to formulate an

understanding of bottlenecks in patient treatment and
improve efficiencies.

This paper describes some trends that broadly apply to
the academic landscape and that are particularly relevant to
the M&S community, in a manner that could trigger the
emergence of simulators that are much more descriptive that
the current state of the art. Many of these trends arose as a
result of the wide impact of the Internet, though they also
built on a climate of goodwill on the part of researchers. In
particular, there is a substantial ecosystem of open-source
tools that make it possible for a researcher with suitable
interests to ramp up a project in spite of a lack of prior
footprint in that area, simply by leveraging existing source
code and publicly available data. In addition, the emergence
of deep neural networks (DNNs) has led to important
advances in both anatomy and therapy modeling. In parallel,
hardware advances include graphical processor units of ever-
improving performance characteristics, as well as haptics
support that includes a bimanual 7 degree-of-freedom device
as well as bimanual haptic gloves with both finger-centered
tactile as well as force feedback loops.

The rest of this paper is organized as follows. Section II
describes limitations of the current state of the art in medical
simulation. Section III addresses a survey of open-source
tools in anatomy modeling. Section IV proposes a survey of
therapy and function modeling. Section V draws conclusions
and summarizes the findings of the paper.

II. CURRENT LIMITATIONS AND PROMISE OF INTERNET-
BASED ECOSYSTEM

It can be argued that much of existing medical practice is
still unrepresented in the current state of the art in M&H
simulation. For example, if one were to peruse the bookshelf
of a neurosurgeon, with a substantial coverage of techniques
applicable to the skull base, where care must be exercised
around cranial nerves and cerebrovasculature, while
comparing this colossal literature with the state of the art in
neurosurgery simulation, arguably less than 1% of
neurosurgical practice is accounted for in simulation. The
same can be said of most areas of medicine: orthopedic
surgery, obstetrics, and so on. M&S engineers are just
beginning to scratch the surface, in part because so few of
us have carried out a meaningful conversation about the
requirements of M&H M&S. It may also be that we fall in
love with a technology and strive to make it fit to a given



situation, which to a degree is putting the cart before the ox.
Regardless of the cause, our methods have change for this
relative irrelevance of H&M M&S to give way to significant
penetration of the technology.
Fortunately, there is some cause for optimism, through the
disruptive impact of Internet-based trends on M&S research.
The first emerging trend that has potentiated the work of
M&H M&S practitioners is the broad dissemination of both
algorithmic information and source code through the
Internet. This phenomenon serendipitously has also enabled
us to build collaborations that would have been infeasible in
the past. In this ecosystem, a suitably inclined researcher
simply needs to find out about existing work in a conference
or journal paper, which is increasingly available publicly in
pdf form, determine the relevant keywords and apply them
to a Google or Engineering Village search, track down the
relevant open-source software tools and publicly available
data repositories, possibly initiate a collaboration that builds
on the authors of the paper or the architects of the open-
source tools (or both), generate some preliminary results
that may leverage examples embedded in the open-source
platform, and finally publish the new application that can
then lead to funding. This cycle can take place in 1-2 years,
which would otherwise have been infeasible or taken a
decade or more to replicate in pre-Internet times. This
ecosystem also makes it feasible to identify early adopters
among clinicians who are willing to collaborate; while
funding bodies may have a preference for a compact team,
geographically distributed efforts do get funded.

III. HIGH-LEVEL SURVEY OF ANATOMICAL MODELING

Broadly speaking, unlike healthcare simulation that
often builds on a single model such as a discrete-event
design, continuous medical simulation is typically founded
on at least two types of models: the patient’s anatomy and
the therapy. Moreover, haptics-driven interactive simulators
must also imbed a third, a contact model, which informs the
simulation where on the anatomy the user interaction is
taking place. The French open-source platform Simulation
Open Framework Architecture (SOFA) [1] [2] typically
labels these three as the Deformation, Visual and Collision
Models, while prescribing the precise nature of the real-time
interactions between any pair of models. Kitware’s
Interactive Medical Simulation Toolkit (iMSTK) platform
has a similar approach [3] [4]: it also decouples the surface
rendered visualization from the therapy model and the
anatomical mesh.

In the nascent period of interactive medical M&S in the
early 2000s, the emphasis in the literature was mostly on
therapy models and the algorithmic infrastructure that
emerged as foundation for SOFA and iMSTK. At the
predictive end of the spectrum, tools like FEBio also
emerged [5]. During this time, and even prior to it, much the
medical image analysis community has proposed several
segmentation techniques that map intensities of MRI and CT
volumes to tissue classes. Classically, we can mention voxel,
boundary and digital atlas-based techniques [6]. In the past

decade, the medical image analysis community has
undergone a revolution in embracing deep neural networks
for much of this activity, which generally speaking
emphasize voxel-based techniques [7]. Specifically,
convolutional neural networks have been developed, where
the spatial organization of the digital image is best suited to a
network with several hidden layers and with operators based
on spatial convolutions. Leading architectures include U-Net
and ResNet [8] [9]. Leading open-source tools for medical
image analysis include ITK [10], while emerging tools for
DNNs include TensorFlow, Caffe and PyTorch [11] [12]
[13].

The plurality of the medical image analysis literature,
including DNN-based techniques, emphasizes voxel-based
segmentation, but this has a number of limitations in relation
to medical M&S. This literature tends to restrict the image
analysis problem to a narrow subproblem, which is typically
concerned with a small, manageable number of tissues, such
as determining the tumor tissues (active and necrotic) as well
as edema in an MRI dataset. However, from the standpoint
of the M&S developer, that narrow problem definition is
often insufficient to represent the totality of the anatomy that
must be modeled for clinical relevant, high-validity
simulation. To further complicate matters, some tissues are
inconspicuous in the medical image. For example, in our
work on scoliosis surgery simulation, whose end-goal is to
specify which ligaments must be cut in order to make the
spine sufficiently compliant, we must deal with the
inconspicuity of these ligaments in CT and MRI. Our
solution involves leveraging the conspicuous tissues like
vertebrae and intervertebral discs to anchor a multi-surface
model-to-image warping to the patient’s dataset [14].

To mitigate these limitations of prevailing segmentation
techniques, a high-level set of specifications must describe
which aspects of the anatomy are needed in the simulation.
In particular, it is vital to know which critical tissues are at
risk and should be preserved in the intervention, even if they
are relatively inconspicuous in most images. If indeed such
tissues are not visible, then the anatomical modeling
approach should either be hand-drawn by an anatomist, in
the form of a multi-surface atlas of the patient or use such an
atlas and warp it to the target image, possibly in a manner
that exploits a DNN-based voxel segmentation.

In some cases, the anatomy must factor in some
anisotropic aspect of tissue orientation, such as the MR
Diffusion Tensor Imaging (MR-DTI)-based tractographic
reconstruction. Leading tools in this area, which my team
uses, include Diffusion Imaging in Python and DSI Studio.

Either way, it is essential to have a high-level
representation of the main steps of the medical intervention,
which is termed a medical ontology or a medical workflow
in the literature [15] [16]. This workflow will typically make
explicit the main steps of the procedure, in a manner that can
be described at various levels of resolution. As depicted in
figure 1, a workflow for a neurosurgical procedure typically
is defined as a function of the choice of approach: pterional,
transnasal, and so on. This approach prescribes the precise
configuration of the craniotomy, which then leads to
expectations about the typical surgical corridor. Having this



knowledge will then enable the M&S designer to make
informed choices about which portions of the anatomy to
mesh in significant detail and which others to mesh coarsely.
One of the main open-source platforms for medical
ontologies is Stanford’s protégé ontology editor [17].

While mapping image voxels to tissue labels is a vital
stage of anatomical modeling, a collection of labeled voxels
is invariably too dense for practical simulation purposes.
Each tissue blob must be represented as a discretized model,
whose dimensionality should be appropriate for the shape of
the tissue. A 3D tissue should be discretized as a collection
of tetrahedra or hexahedra, where the former is often
preferable due to the unsupervised aspect of the meshing.
Meanwhile, a surface-like structure such as the dura mater of
the brain should be represented as surface elements, i.e.
triangular shells, and a curvilinear tissue like a nerve benefits
from a simple beam element representation that traces a path
through its central axis. One rich open-source repository for
discretization is Computational Geometry Algorithms
Library, CGAL [18], which includes Alliez’ variational
tetrahedral meshing algorithm [19]. Surface meshing is also
a challenging exercise, with support from VTK, GMSH and
various GitHub repositories, such as controlled surface mesh
decimation based on Approximated Centroidal Voronoi
Diagrams (ACVD) [20] [21] [22]. There is also new research
and GitHub support for DNN-based approach to tetrahedral
meshing, termed DefTet [23]. In earlier work, my group has
proposed curvilinear discretization founded on deformable
Simplex contours, where every non-terminal edge linked a
pair of vertices, and each vertex was attracted to the central
axis of tubular structures. We applied this discrete
deformable contour to identifying cranial nerves in T2-
weighted MRI [24].

IV. SURVEY OF FUNCTION AND THERAPY MODELING

In lockstep with progress on anatomical modeling,
substantial resources have been made available for therapy
and function models of various kinds.

Orthopedics, geriatric medicine and indeed obstetrics, as
proposed by my group in this conference, can benefit from
high-efficiency musculoskeletal M&S, which is available
from Stanford’s OpenSim platform [25] [26]. Our adaptation
of OpenSim will involve the coupling of this
musculoskeletal simulation with glove-based haptics, where
the ObGyn in training can practice the Posterior Arm
Release technique, which entails hooking a finger under the
trailing armpit of the fetus, while cradling the head with the
nondominant hand, to enable the baby to emerge from a life-
threatening shoulder dystocia situation. It is also feasible to
exploit OpenSim with realistic anatomical surfaces, adapted
to geriatric patients, to train an DNN dedicated to Human
Pose Estimation to identify imminent falls in these patients
and deploy mitigating strategies [27].

As mentioned above, a significant area of open-source
activity involves the deployment of haptics-driven surgery
simulation platforms SOFA and iMSTK, respectively
developed at INRIA (France) and Kitware (USA). The basic
architecture is fairly similar, in emphasizing coupled models
for surface rendering-based visualization, soft tissue

deformation founded on efficient finite elements [28], and
efficient collision detection for determining the portion of the
anatomy in contact with the virtual tool [29].

Many simulation platforms are dedicated to one
physiological system. OpenCarp [30] is an advanced in silico
cardiac electrophysiology (CEP) platform which has
emerged as an important staple for cardiology research,
including device and drug development while also providing
assistance for diagnosis. State-of-the-art modeling studies
use unstructured, high resolution, image-based tomographic
reconstructions to reflect individual cardiac anatomies with
high geometric fidelity and avoid spurious boundary
artefacts introduced by jagged surfaces of Cartesian grids.
Unstructured tetrahedral meshing enables sophisticated
discretization such as finite elements [31]. CEP four
chamber models are emerging and can account for
anisotropic tissue properties as well as high-fidelity
conduction pathways in all chambers, where the cardiac
conduction system consists of the sinus node, atrio-
ventricular node and the His-Purkinje system. This software
platform is leveraged in the cardiac simulation paper
presented by Owusu-Mensah et al.

For computational neuroscience applications,
neuroactivation simulation techniques can be categorized in
terms of their scale: i) microscopic models, ii) mesoscopic
models, and iii) macroscopic, large-scale models spanning
the whole brain. Microscopic models emerged when McNeal
proposed coupled electric field data to multi-compartment
neuron models to predict neural activation around the
stimulating electrode, in deep-brain stimulation applications.
This model represented a point current source and a
myelinated fiber placed near it, with both assumed to lie in a
long, uniform conducting medium, which was solved with
Kirchoff’s law [32]. Another microscopic model was
proposed by Rubin and Terman for representing the synaptic
interconnections in basal ganglia as well as between their
afferent and efferent structures [33]. Microscopic neural
models are available in the Neuron toolkit and ModelDB
[34] [35]. Mesoscopic models focus on the dynamics, size
and structure of neural systems rather than on the exact
morphology of individual neurons. The first models of
localized populations of neurons were proposed based on an
axiom [36]: all neural processes depend upon the interaction
of excitatory and inhibitory cells. This network is seen as a
sequence of a group of neurons connected in a feed-forward
manner through divergent or convergent connections,
forming a chain-like structure. Finally, macroscopic mean-
field models represent the dynamics of large populations of
neurons with a number of state variables [37]. A statistical
description of each population is given by a probability
density function that expresses the distribution of neuronal
states, i.e. membrane potential, in a population. Neural
dynamics are described by the evolution of the probability
density function, which under simplifying assumptions is
Fokker-Planck equation. A large-scale model such as this
one is the foundation of the software tool The Virtual Brain
[37], which is used to model epileptogenic neural circuits
based on patient cortex data, in a manner driven by Diffusion
Tensor Imaging tractographic and connectomic models [38].



In addition to the preceding functional and therapeutic
models, there are numerous public resources in physiology
simulation worth citing. In particular, single-focus
physiological simulation toolkits, such as CellML and the
Physiome Project are useful in providing an understanding of
a physiological system, particularly at a cell level [39] [40].
In addition, integrative physiology simulation originated
with Guyton, culminating in the 1970s in a model of
cardiovascular physiology featuring roughly 150 distinct
variables [41]. Milestones in integrative physiology
simulation include Quantitative Circulatory Physiology
(QCP), which reproduced several hundred functions
describing cardiovascular, renal, neural, respiratory,
endocrine and metabolic relationships within and across
various organ systems [42]. The latter led to University of
Mississippi’s HumMod, and to recent open-source
integrative physiology engine, BioGears [43] [44]. BioGears
has spawned the fully open-source Pulse Physiology Engine,
which is available from Kitware [45]. Pulse has also been
shown to support coupling with haptics-driven surgical
simulation based on iMSTK [46].

Last, the convergence between therapy models and deep
neural networks should be brought to the attention of the
reader. A U-Net-based simulation of finite elements, termed
U-Mesh was proposed by Mendizabal, Cotin et al, at INRIA,
France [47] [48]. U-Mesh is the one of the earliest and most
effective deep neural networks of its kind dedicated to
synthesizing FE computations; it is designed to run on top of
the Simulation Open Framework Architecture (SOFA) open-
source interactive surgery simulation platform. The original
U-Mesh network is a parameterized function that accepts a
{3 x nx x ny x nz} force tensor f as input and produces a
displacement tensor u of the same size as output. Training
data for U-Mesh are generated by solving a discretized
boundary value problem (BVP) with the FE method. U-
Mesh computations ran over 100 times faster than
comparable FE simulations also designed for interactive
processing, typically under 0.01 seconds, using graphical
processor unit (GPU) hardware. An earlier implementation is
the PhyNNeSS system proposed by De in 2011, which also
used finite elements studies to train a neural network;
PhyNNeSS has not yet been made public.

V. SUMMARY

This paper provided a short summary on public state-of-
the-art software tools now available to medical and
healthcare simulation communities. There was an overview
of the main approaches and corresponding tools for tissue
segmentation and meshing that comprise patient-specific
anatomical modeling. In addition, a high-level survey was
also proposed for therapy and function modeling as well as
corresponding simulation platforms, many of them with
usage in both academia and industry. The prevailing theme
has been the availability of these tools in the public domain
as well as convergence with progress in deep neural
networks.
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