In Silico Investigation of Cardiac Arrhythmia Susceptibility in Long QT Phenotype

Anthony Owusu-Mensah¹, Vicky Lam¹, Bright Tsevi², Michel Audette¹, Makarand Deo²

> ¹Old Dominion University (USA), ²Norfolk State University (USA) Contact email: **mdeo@nsu.edu**

Anthony Owusu-Mensah

- Anthony Owusu- Mensah obtained a master of science degree in Electronics Engineering from Norfolk State University (NSU), USA in 2019.
- He is currently studying at Old Dominion University (ODU) for a PhD in Biomedical Engineering under the supervision of Dr. Michel Audette (ODU) and Dr. Makarand Deo (NSU).
- His interest lies in developing working numerical single cell biophysical cardiac myocyte models and integrating these models into 3D anatomically realistic models to study mechanisms of arrhythmia initiation and maintenance.

Table of Contents

- Aim and contributions of paper
- Electrophysiology of the heart (Sinus Rhythm)
- Cardiac Action Potential (AP)
- Long QT Syndrome (LQTS)
- Methods Used for Study
 - Single Cell Biophysical Modeling
 - 3D Anatomical Modeling
 - Reentry Induction Protocol
- Results
 - Single Cell Biophysical Modeling
 - Pseudo-ECG from 3D Anatomical Modeling
 - Window of Vulnerability to Reentry
 - Simulated Reentry Mechanism
- Conclusions

Aim and contributions of paper

- In our paper we aimed at:
 - Utilizing anatomically and electrophysiologically realistic numerical simulations to elucidate the mechanisms of arrhythmia initiation in the presence of blockade in rapid component of delayed rectifier potassium current, I_{kr}.
- Contributions are as follows:
 - A realistic anatomical model was used to gain insight in LQT2.
 - The effects of I_{Kr} blockade on AP morphology are more severe in cardiac Purkinje cells than that in ventricular myocytes.
 - The loss of I_{Kr} function increases the spatial dispersion of repolarization and refractoriness resulting into increased vulnerability to reentry and ventricular tachycardia.
 - The His-Purkinje system plays an active role during maintenance of tachycardia.

Electrophysiology of the heart (Sinus Rhythm)

- The heart consist of 4 chambers (2 Upper chambers- Right atrium (RA) & Left atrium (LA) and 2 lower chambers – Right Ventricle (RV) & Left Ventricle (LV).
- SA node is spontaneous Initiates rhythmic pulses(in the form of action potentials) without any neural stimulation.
- Each pulse from SA propagates through AV node before it gets to the ventricles.
- Propagation delay through the AV node allows adequate time for atrial contraction and ventricular filling.
- From AV node electrical impulses propagates through the His-Purkinje system (PS) to the ventricles. This results in ventricular contraction.
- Any disruption to this rhythm is termed arrhythmia.

Electrical Conduction System of Heart

Ikonnikov and Yelle, McMaster Pathophysiology Review.

Cardiac Action Potential (AP)

- AP is the electrical potential of an excitable cell.
- All or nothing events, regenerative, propagating and results when a threshold voltage is reached.
- Phases of action potential (AP)
 - 0 Upstroke
 - 1 Early repolarization
 - 2 Plateau

– 4 resting

- 3 Final repolarization

Action potential of cardiac muscles Grigoriy Ikonnikov and Eric Wong Phase 4 Phase 0 Phase 1 Phase 2 Phase 3 ECF Na+ Ca2+ • • • ICF K+ K+ K+ K+ Transient K+ channels open and K+ efflux returns TMP to OmV Membrane potential (mV) 0 2 Rapid Na+ influx Influx of Ca2+ through through open fast L-type Ca2 + channels Na+ channels is electrically balanced Ca2+ channels close but by K+ efflux through delayed rectifier K+ delayed rectifier K+ channels remain open and channels return TMP to -90mV -50 Na+, Ca2+ channels closed, open K+ rectifier channels keep TMP stable at -90mV Δ -90-100Time

Ikonnikov and Yelle, McMaster Pathophysiology Review.

6

Long QT Syndrome (LQTS)

- Acquired or congenital cardiac disorder- manifest as QT prolongation on an ECG.
- Associated with life-threatening ventricular arrhythmias and sudden cardiac death.
- Common LQTS types LQT1 (decrease in I_{Ks}), LQT2 (decrease in I_{Kr}) and LQT3 (increase in I_{Na}).
- *hERG* gene encodes I_{Kr} current.
- Ion channel mutation in *HERG* leading to LQTS causes complete or partial blockade of I_{Kr} current.
- Myriad of drugs (E-4031, dofetilide etc.) block I_{Kr} leading to drugs-induced LQTS.
- Arrhythmia due to LQT2 phenotype well documented Mechanism however is not clearly understood.

А

В

Crumb et al., Current protocols in pharmacology, 2003.

Single Cell Biophysical Modeling

- Single cell simulations were performed in Bench – an openCARP utility [1].
- Simulations were performed using a rabbit ventricular myocyte (VM) [2] and Purkinje cell (PC) [3] ionic models.
- I_{kr} was blocked from 0% (Control) to 100% (Complete blockade).
- Both models were paced at a BCL of 500 ms for 50s to attain steady state.
- Effect of I_{Kr} blockade on AP durations at 50% (APD₅₀) and 90% (APD₉₀) repolarization was studied for both models.

Ventricular AP (blue) and Purkinje AP (red) from single cell simulation

https://opencarp.org/documentation/user-manual.
Mahajan et al., Biophys. J., 2008.

3. Aslanidi et al., Biophys. J., 2010.

3D Anatomical Modeling

- The 3D simulations were performed using a rabbit ventricular anatomical tetrahedral finite element mesh integrated with a PS.
 - 547,680 myocardial nodes
 - 862,515 nodes including surrounding bath and cavities
- The PS was a branching network of 1D cubic Hermite elements.
 - PS nodes were separated by gap junctions modeled as fixed resistors.
 - Purkinje Myocardial junctions modeled as fixed resistors.

Governing Bidomain Equations

$$\nabla . (\overline{\sigma_{i}} + \overline{\sigma}_{e}) \nabla \Phi_{e} = -\nabla . \overline{\sigma_{i}} \nabla V_{m} - I_{e}$$
⁽¹⁾

$$\nabla . \, \overline{\sigma_i} \nabla V_{\rm m} = -\nabla . \, \overline{\sigma_i} \nabla \Phi_{\rm e} + \beta I_{\rm m}$$
 (2)

$$I_{\rm m} = C_{\rm m} \frac{\partial V_{\rm m}}{\partial t} + I_{\rm ion} (V_{\rm m}, v) - I_{\rm trans}$$

 $I_{\rm m}$ - Transmembrane current

 $\overline{\sigma_i}, \overline{\sigma}_e\text{-}$ Intra and extracellular conductivities.

 $arPhi_i, arPhi_e$ - Intra and extracellular potentials.

 β - surface-to-volume ratio of the cardiac cells.

 $I_{\rm trans}$ -Transmembrane current density stimulus as delivered by the intracellular electrode.

 $I_{\rm e}\,$ - Extracellular stimulus current density, $\rm C_m$ - Membrane capacitance per unit area.

- V_{m} Transmembrane voltage
- *I*_{ion} Current density flowing ionic channels
- v Variables influencing membrane voltage

(3)

3D computational mesh of rabbit ventricles integrated with a PS (green color) used in our study. The inset shows the mesh discretization.

Reentry Induction Protocol

- Reentry was induced using S1-S2 protocol for both Control and 100% $\rm I_{\rm Kr}$ blockade.
- Myocardial conductivity was reduced by 50% to lengthen reentrant path.
- Both models were paced at 500 ms BCL for 5s to simulate sinus rhythm (S1).
- Ectopic stimulus (S2) was then delivered to a quarter region of the RV.
- S1-S2 interval was varied between 200 ms 300 ms in 10 ms steps to determine a window of vulnerability to reentry.
- S1-S2 duration was varied in steps of 1-5 ms within the window of vulnerability to allow fine control of the timing at which reentry occurs.
- Reentry activations sustained beyond 500 ms were classified as tachycardia.

Single Cell Biophysical Modeling Results

- PCs have inherently longer AP duration and prominent notching than VMs.
- I_{kr} blockade prolonged AP duration in both cell types.
- Effect of I_{kr} blockade was severe in PCs than VMs (26% vs 13% prolongation for 100% I_{kr} blockade).

PC

%

Prolongation

0

12

19

26

Pseudo-ECG from 3D Anatomical Modeling

- Pseudo-ECGs were obtained by extrapolating extracellular potentials to approximate limb locations for leads I,II and III.
- Blockade of I_{Kr} produced QT prolongation. QT duration increased as I_{Kr} conductance was reduced(26% prolongation for 100% I_{Kr} block).
- Notch prominence in T-wave increased as I_{Kr} blockade increased.
- QT prolongation in the model was in agreement with experimental and clinical findings.

Window of Vulnerability to Reentry

- If S2 stimulus occurred too soon, it was blocked by the refractory tissue (grey).
- Whereas if S2 occurred too late, it was conducted by the entire ventricular tissue causing a premature excitation (blue).
- If the S2 stimulus occurred when the tissue is partially excitable, more complex interactions were observed (Red) – Reentry & Ventricular tachycardia.
- S1-S2 window for tachycardia extended significantly during the I_{Kr} block (233% prolongation for 100% I_{Kr} block).

Simulated Reentry Mechanism (S2 at 5240 ms)

5270 ms

5369 ms

RBB- Right Bundle Branch, **LBB**- Left Bundle Branch, **V-P**: ventricular myocardium to Purkinje propagation; **P-V**: Purkinje to ventricular myocardium propagation; **P-P**: propagation within the Purkinje system; **CB**: conduction block.

A:5270 ms. An ectopic stimulus in the region of RV excites neighboring myocytes and excitation spread towards the RBB (V-P; black arrow). The excitation is blocked by the RBB, preventing retrograde propagation to the LBB.

B:5369 ms. LBB excitable after applying the ectopic stimulus. The activation excites the LBB, and the LV and excitation is propagated retrogradely to the RBB, exciting it and RV (P-P; white arrow).

C:5567ms. Retrograde propagation from the LBB to RBB experiences a conduction block (CB) (CB; blue arrow).

D:5692 ms. RBB and LBB are both excitable. Excitation from the ventricle (V-P; black arrow) excites the RBB. Retrograde propagation (P-P; yellow arrow) through the RBB reached the LBB, exciting it and the LV.

Conclusions

- We presented a multiscale numerical simulation study to investigate the arrhythmogenic effects of HERG channel block producing an LQT2 phenotype.
- Our model was able to reproduce clinically observed QT prolongation in ECG as a result of I_{Kr} block.
- Our study revealed that a complete I_{Kr} blockade results into more severe phenotype in Purkinje cells than in ventricular myocytes.
- The window of susceptibility to reentry that degrades into tachycardia was significantly prolonged in presence of I_{Kr} block.

Thank you!

