

Emergence of a Multiple-Sourcing Strategy in a Buyer-Supplier Network: Effects of different Quantity-Quality and Quantity-Price Trade-Offs

- 1) Problem definition and research question
- 2) Research gap and Method
- 3) Model overview
- 4) Results

Kristian Strmenik, Christian Mitsch, Friederike Wall, Gernot Moedritscher

Presenter: Kristian Strmenik E-Mail: <u>kristian.strmenik@aau.at</u> Affiliation: Alpen-Adria Universitaet KLagenfurt

Presenter Resume

Education

- Alpen-Adria Universitaet Klagenfurt Geography and Regional Research, Bachelor and Master (2006 - 2010)
- Alpen-Adria Universitaet Klagenfurt Business Administration and Management, Bachelor and Master (2009 - 2014)
- University of North Carolina at Greensboro Business Administration, Entrepreneurship (2011)

Work experience

- Controller (Intern): DZ BANK AG, Hong Kong, SAR China (2012 2013)
- ERP Consultant: Skiline Media GmbH, Klagenfurt, Austria (2013 2014)
- Senior Lecturer: Alpen-Adria Universitaet, Klagenfurt, Austria (2015 2019)
- Consultant: m27 Fedas Management GmbH, Graz, Austria (2019)
- Controller: Leftshiftone Software GmbH, Graz, Austria (2019 present)
- Senior Lecturer (ext.): Alpen-Adria Universitaet, Klagenfurt, Austria (2019 present)

Research interest

• Management Systems, Controlling, Agent-based simulation

Problem definition and research question

- Diversified supplier portfolio as strategic decision for protection against possible failures and errors (Federgruen/Yang, 2009)
- Challenge/objective for companies: Allocation of the planned procurement volume in the required quality and price to the selected suppliers (Kawtummachai/Hop, 2005)
- Exemplary parameters in the literature: price, quality, on-time delivery (z.B. Xiang et al., 2012)

How do different procurement volumes affect the buyer's supplier structure when (1) the suppliers are heterogeneous with respect to the quantityquality and quantity-price trade-offs,

(2) the buyer pursues a multiple-sourcing strategy, and

(3) the buyer learns its own quality-price preferences based on its supplier environment?

Research Gap and Method

- Research gap:
 - Consideration of the quantity-quality and quantity-price trade-off in the allocation of procurement volumes
 - Analysis of the resulting effects on the supplier structure in a buyer-supplier model
 - Consequences of different allocation parameters for the supplier structure
- Agent-based simulation because of the following characteristics/advantages:
 - In particular: Illustration of heterogeneous agents
 - Reflects interactions between different individuals and their environment
 - Allows investigation of complex problems
 - Representation of processes/time: Change of supplier structure over time (Davis et al., 2007; Deckert/Klein, 2010)

Setting simulation input parameters

• <u>Agents</u>: 1 buyer, *m* suppliers

•

٠

- <u>Volume</u>: procurement volume $X_t \forall t \in \{1, ..., T\}$
 - Supplier:supplier volume $x_{i,t} \forall i \in \{1,...,m\}$ initial supplier volume x_{i,t_1}^S initial quality q_{i,t_1}^S initial price p_{i,t_1}^S supplier experience curve effect L_i market price p^M
 - Buyer:market price p^M quality-price preference (α_t) variation in quality $\theta q_i^B \sim \mathbb{N} (\mu_{\theta_{q_i^B}}, \sigma_{\theta_{q_i^B}}^2)$

$$q_{i,t}^{S}(x_{i,t}^{S}) = H_{i} - \frac{H_{i} - G_{i}}{1 + C_{i} * e^{-k_{i} * x_{i,t}^{S}}}$$

$$p_{i,t}^{S}(x_{i,t}) = p^{M} * (x_{i,t}^{S} + 1)^{\frac{\log(1-L_{i})}{\log(2)}}$$

• Buyer allocates procurement volume equally to suppliers

$$x_{i,t_1}^S = \frac{x}{m} \qquad \qquad X = \sum_{i=1}^m x_{i,t}^S = 1$$

- Buyer requests each supplier to submit an offer for allocated initial procurement volume x_{i,t_1}^S
- Each supplier is characterized by a quality and price curve
- Identification of quality and price curve is only carried out once - does not change for one simulation

• Buyer imperfectly observes the quality of the suppliers

 $q_{i,t}^B = q_{i,t}^S + Q_{i,t}$

• Buyer's quality-price preference

$$w_{i,t} = \alpha_t * q_{i,t}^B + (1 - \alpha_t) * \frac{p^M - p_{i,t}^S}{p^M}$$

• α_t is learned by the buyer using temporal difference learning

- Buyer weights observed quality and price according to its preference
- Buyer allocates procurement volume proportionally to all suppliers depending on their individual weights

$$x_{i,t+1}^{S} = \frac{w_{i,t}}{\sum_{i=1}^{m} w_{i,t}} X$$

Parametrization

Exogenous parameters	Values/Types		
		$T_{\rm r} = 100$	
Time steps to learn the parameter $lpha_t$		$T_{L} = 100$	
Time steps to stabilize the allocation		$T_{S} = 10$	
Time steps to evaluate the outcome		$T_{E} = 10$	
Number of sim. runs		N = 1000	
Number of suppliers		m = 3	
Market price		p^M = 1	
Retail price		<i>p</i> ^{<i>R</i>} =1	
Supplier Type	Type 1	Type 2	Type 3
Supremum of $q_{i,t}^S$	$H_1 = 1.0$	$H_2 = 0.8$	$H_3 = 0.6$
Infimum of $q_{i,t}^{S}$	$G_1 = 0.0$	$G_2 = 0.0$	$G_3 = 0.0$
$q_{i,t}^{S}(x_{i,t}^{S}=0)$ (in %)	$C_1 = 99$	$C_2 = 79$	$C_3 = 59$
Logistic growth rate	$k_1 = 0.23$	$k_2 = 0.109$	$k_3 = 0.068$
Inflection point	$x_1^{IP} = 20$	$x_2^{IP} = 40$	$x_3^{IP} = 59$
Relative price reduction	$L_1 = 0.05$	$L_2 = 0.10$	$L_3 = 0.15$
Action space	$A = \{0.0, 0.1, \dots, 1.0\}$		
Discount factor	$\gamma = 0$		
Procurement volume	$X \in \{1, 2, \dots, 100\}$		
Buyer's precision of quality measurement	$\sigma \in \{0, 0.01, 0.02, \dots, 0.10\}$		

Results of our perfect scenario with $\sigma = 0$ (1)

• Buyer's quality-price preference

Results of our perfect scenario with $\sigma = 0$ (2)

• Buyer's supplier structure

Procurement volume X

Results of our perfect scenario with $\sigma = 0$ (3)

• Simulation results over time

Results of our imperfect scenarios with $\sigma > 0$ (1)

• Buyer's quality-price preference

Results of our imperfect scenarios with $\sigma > 0$ (2)

• Buyer's supplier structure

Procurement volume X

Conclusion

• Findings:

- For small (high) procurement volumes the buyer puts more emphasis on quality (price)
- We identify a tipping point, at which the buyer puts equal emphasis on price and quality
- With a poorer precision of the quality measurement system and a lower procurement volume the buyer orders less from high-quality suppliers
- With a large procurement volume and a perfect quality measurement system the buyer separates the different suppliers much faster

• Limitations:

- Limited number of suppliers and constant supplier parameters over time
- Buyer only makes decisions based on the suppliers' quality and price
- Suppliers do not interact/communicate between each other

Literature (presentation)

J. Davis, K. Eisenhardt, and C. Bingham, "Developing Theory through Simulation Methods," Academy of Management Review, vol. 32, no. 2, pp. 480-499, 2007.

A. Deckert, and R. Klein, "Agentenbasierte Simulation zur Analyse und Lösung betriebswirtschaftlicher Entscheidungsprobleme," Journal für Betriebswirtschaft, vol. 60, no. 2, pp. 89-125, 2010.

A. Federgruen, and N. Yang, "Optimal supply diversification under general supply risks," Operations Research, vol. 57, no. 6, pp. 1451-1468, 2009.

R. Kawtummachai, and N. van Hop, "Order allocation in a multiple-supplier environment," International Journal of Production Economics, no. 93-94, pp. 231-238, 2005.

W. Xiang, F. Song, and F. Ye, "Order allocation among multiple suppliers by production load equilibrium," CIE42 Proceedings, 2012.

Thank you for your attention!