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Overview



Introduction

• Condition-based monitoring (CBM) systems:
- Strategy to monitor and identify conditions of 
a process or machinery.
- A smart system making decisions without 
human interactions.
- Reduce cost and increase efficiency.

• Oil & Gas Industry goal:
- Loss of 20 billion dollars every year due to 
abnormal events.
- Abnormal Event Management (AEM).
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Offshore oil wells

Monitored Variables/Sensors: 

• Pressure at the Permanent Downhole Gauge (PDG).

• Pressure at the Temperature and Pressure Transducer (TPT).

• Temperature and the TPT.

• Pressure upstream of the Production Choke Valve (PCK).

• Temperature downstream of the PCK.

• Downhole Safety Valve (DHSV) – Closure Mechanism. 
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3W dataset

• 1. Abrupt increase of BSW.

• 2. Spurious closure of DSHV.

• 3. Severe slugging.

• 4. Flow instability.

• 5. Rapid productivity loss.

• 6. Quick restriction in PCK.

• 7. Scaling in PCK.

• 8. Hydrate in production line.

• A data set released by Petrobras.

• Real, simulated and hand-drawn 
instances.

• Eight real undesirable events:

Quantitative relation of the instances in the 3W dataset.

Introduction

Real instance of ‘Abrupt increase of BSW’ showing the 
temperature at TPT
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System 
Framework

System Framework
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1. Preprocessing
1. Split data into train and test (70/30)

2. Clean before feature extraction

Total amount of Nan values and unlabeled
observations for each event in the dataset.

Quantitative relation between the training and 
test set.

System Framework

5



2. Feature   
Extraction

Hyperparameters:

• Window size N.

• Step size s.

System Framework
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Nine statistical features:

• Mean and standard deviation.

• Skewness and Kurtosis.

• 5-number summary:
- Minimum, median and maximum.
- Lower and upper quartiles.



3. Data 
Transformation

Hyperparameter:

• PCA threshold τ.

Principal Component Analysis (PCA) : 
Reducing the 72-dimensional data (eight sensors and nine features).

System Framework
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4. Classification 
Modeling

Hyperparameters:

• Max tree depth d.

• Number of estimator E.

Random Forests: 

• Simple to train and deploy.

• It can handle small datasets.

System Framework
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Experiment 1:

Fault versus Normal Operation.

• Discriminate between faulty 
and normal operations.

• Applying multiple binary 
classifiers, one for each fault. 

• The classifiers are fit on their 
specified fault and class 0 
(normal operation).

Experiment 2:

Fault versus Not Fault.

• Discriminate between a 
specified fault and everything 
that does not belong to that 
certain fault.

• Applying multiple binary 
classifiers, one for each fault. 

• The classifiers are fit on all 
classes. 

Experiments and Results
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Overall Test Accuracy. Test Accuracy for each transitional state.

Experiments and Results

10

Experiment 1: Fault versus Normal Operation



Overall Test Accuracy. Test Accuracy for each transitional state.
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Experiment 2: Fault versus Not Fault



Experiments and Results

• System efficiency and reliability evaluation:
How fast the system can detect an incoming 
failure (t1), the amount of consecutive correct 
predictions after the time of detection (t2), 
and how long time is left to prevent the 
incoming failure (t3). 

A real instance of ‘Class 1’ predicted sample-wise. 
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Fault versus normal operation

Fault t1 [s] t2 [s] t3 [s]

Class 1 2463.0 (11.73%) 2710.0 (12.90%) 18530.0 (88.26%)

Class 2 15.5 (0.33%) 4700.1 (99.67%) 4700.1 (99.67%)

Class 5 564.2 (1.06%) 41879.0 (78.87%) 52533.7 (98.93%)

Class 6 73.5 (11.87%) 546.0 (88.20%) 546.0 (88.20%)

Class 8 1.0 (0.00%) 20078.0 (100%) 20078.0 (100%)

Fault versus not fault

Fault t1 [s] t2 [s] t3 [s]

Class 1 2463.0 (11.73%) 2707.0 (12.90%) 18530.0 (88.26%)

Class 2 9.3 (0.19%) 4706.4 (99.81%) 4706.4 (99.81%)

Class 5 1.0 (0.00%) 822.3 (1.55%) 53097.3 (99.9%)

Class 6 318.5 (51.5%) 237.5 (38.4%) 300.5(48.54%)

Class 8 1.0 (0.00%) 20078.0 (100%) 20078.0 (100%)

System Efficiency 
and Reliability

Experiments and Results
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Discussion

Time consistency filter
• A strategy to reduce inconsistency and 

fluctuating system classifications.

• A simple filter that evaluates the last 120 
samples and filters out the class with the 
fewest output classifications.

Experiments and Results
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Conclusion

• This work has successfully 
built a complete CBM 
system and applied 
complex machine learning 
tools, which are the 
current state-of-the-art. 

• The system can extract 
features, reduce 
dimensionality, and 
classify with the popular 
random forest algorithm.

• Both classification 
scenarios have shown that 
it can not only detect 
failures but also 
anticipating the incoming 
failures, with an overall 
accuracy of 90%.

• Introduced a “time-
consistency filter” to 
reduce inconsistent 
system classifications.
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