Trust Management in **Space Information Networks**

dr. Anders Fongen, nov 2021

Norwegian Defence University College, Cyber Defence Academy, Lillehammer email: anders@fongen.no

SECURWARE 2021, Athens, Greece

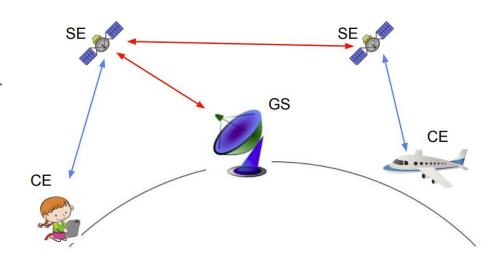
Presenter's bio

Anders Fongen

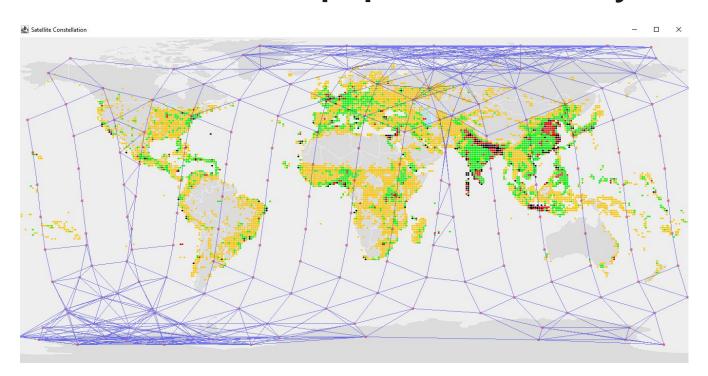
- Associate Professor, Norwegian Defence University College
- Field of research: Distributed Systems, Networking security
- PhD in Distributed Systems, Univ. of Sunderland, UK, 2004
- Career history
 - 4 years in military engineering education
 - 10 years research in defence research (Chief Scientist)
 - 8 years in civilian college (Associate professor)
 - 11 years in oil industry
 - 6 years in electronics industry

Introduction

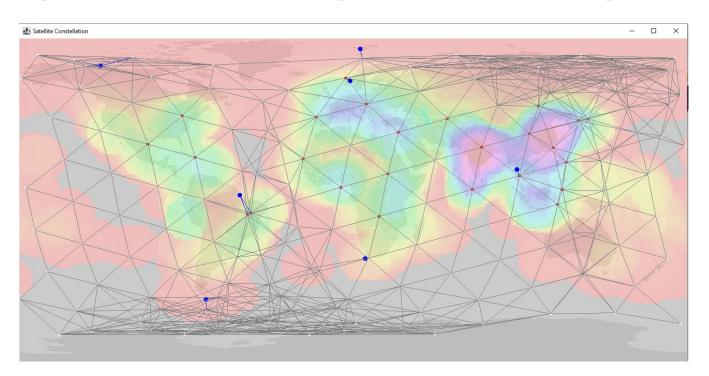
- The evolution of satellite communication?
 - Application Services ("Cloud Computing in Space")
 - Higher System Complexity (larger state space)
- What are the advantages?
 - Very Low Latency (as low as 2 ms)
 - Global coverage
- Interesting property of a Low Earth Orbit (LEO) system
 - Long idle periods (due to inhabited surface) mixed with traffic peaks
- Viewed as a problem of Distributed Computing
 - having a set of distinct properties


What is a SIN (Space Information Network)?

- A collection of communicating LEO satellites, called Satellite Endpoints (SE)
- Able to serve terrestrial/airborne client (CE)
 - Communication services (e.g., IP transport, VoIP, Publish-Subscribe comm.)
 - Discovery Services (DNS, Service Brokering...)
 - Storage Services (Content Distribution Network, caching, session states)
 - Application Services (Collaborating editing, Situational awareness ...)
- Resource constrained / disadvantaged
- Predictable workload and link availability
- "Mobile" system: Stationary clients, mobile infrastructure
- Rapid hand-over of client connection and client state


Components of a SIN and their relations

- Satellite Endpoints (SE)
 - Any combination of LEO and HEO satellites
- Client Endpoints (CE)
 - Clients to the SIN (but may offer services), on ground or airborne
- Ground Station (GS)
 - Connects the SEs to other endpoints and resources in the Internet



SE constellation vs population density

Population "heat map" under SE footprint

Protection of services and resources in a SIN

Mutual Authentication and **Authorization Control** between endpoints on link and application layer **protects the added value** created by the transaction.

- Credential Management deployment and revocation of keys and certificates
 - Happens "now and then" Delay Tolerant operation
- Authentication/Authorization control bound to a protected communication session (link/transport)
 - Must complete before transaction can start **Delay Sensitive operation**
- Credential Management could take place during idle periods of the orbit

Credential Management

Why are X.509 certificates not chosen?

- Unnecessary big (bloated and ambiguous data structure)
- No place to hold authorization info

Why are the PKIX arrangement not chosen?

- Certificate revocation was never a good idea
- and even worse in a constrained network

X.509 is replaced by *Identity Statement* (IdS)

- Functionally equivalent, but adds authorization information
- No revocation, but intended to be short lived
- Issued by Identity Providers (IdP), equivalent to Certificate Authority (CA)
 - IdP shared by members of a Community of Interest (Col)
 - Also a Trust Anchor for members of the same Col
- Cross-Col authentication is offered by Guest IdS
 - much simpler and more efficient than PKIX Cross Certificates

```
IdS = Owner: RFC-822-name, PublicKey, AuthorizationAttributes
ValidityPeriod: From, To
Issuer: X.500DN-name
Signature
Cross-COI extensions
```


Service Invocations with IdS

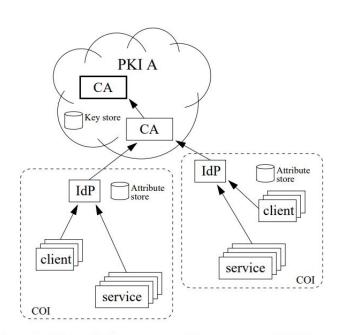


Figure 2. The functional components of trust management. The IdP serves one single CoI. Keys are issued by a PKI, attributes by the IdP.

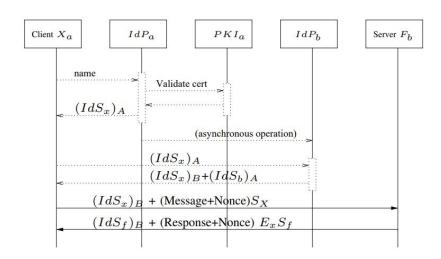


Figure 3. Trust management protocols for IdS issue and service invocation in a cross-CoI environment.

Issuing and re-issuing IdS in a SIN

Interesting problem: Exploits the **delay tolerant** properties and satellite **idle periods**

- 1. Expiration time of and IdS is known.
- 2. Anyone can ask for a re-issued IdS
- 3. Ground Station (GS) can upload a new IdS to a courier satellite (SE)
 - a. Which SE to choose as a courier?
 - b. How to make sure that the Client Endpoint (CE) is "connected"?
 - c. Upload to several SEs to increase the success probability?
- 4. Service endpoint (on Internet) can request an IdS on behalf of the client
 - a. And pass it along piggybacked on the response message
- 5. Even the SE (servicing the CE) can hold the IdS and engage in the protocol
 - a. complicates operation and thwarts interoperability

Conclusion

- SIN is a natural and expected evolution for satellite networks
- Lots of unsolved and interesting problems
 - e.g., keeping track of IdS issuing and re-issuing of IdS
 - Subject to experimentation on software model
- Future activities
 - modeling av experimentation on other middleware operations
 - DNS, Content Delivery Networks
 - Handover operations and stateful protocols
 - Modeling of simple stateful applications
 - Voice-over-IP
 - Publish-Subscribe distribution