Reliability Assessment of Erasure-Coded Storage Systems with Latent Errors

Ilias Iliadis
ili@zurich.ibm.com
April 18-22, 2021
Short Résumé

▪ Position
 – IBM Research - Zurich Laboratory since 1988

▪ Research interests
 – performance evaluation
 – optimization and control of computer communication networks
 – reliability of storage systems
 – storage provisioning for Big Data
 – cloud infrastructures
 – switch architectures
 – stochastic systems

▪ Affiliations
 – IARIA Fellow
 – senior member of IEEE
 – IFIP Working Group 6.3

▪ Education
 – Ph.D. in Electrical Engineering from Columbia University, New York
 – M.S. in Electrical Engineering from Columbia University, New York
 – B.S. in Electrical Engineering from the National Technical University of Athens, Greece
Data Losses in Storage Systems

- Storage systems suffer from data losses due to
 - component failures
 - disk failures
 - node failures
 - media failures
 - unrecoverable and latent media errors

- Reliability enhanced by a large variety of redundancy and recovery schemes
 - RAID systems (Redundant Array of Independent Disks)
 - RAID-5: Tolerates one disk failure [Patterson et al. 1988]
Data Losses in Storage Systems

- Storage systems suffer from data losses due to
 - component failures
 - disk failures
 - node failures
 - media failures
 - unrecoverable and latent media errors

- Reliability enhanced by a large variety of redundancy and recovery schemes
 - RAID systems
 - RAID-5: Tolerates one disk failure
 - RAID-6: Tolerates two disk failures
Erasure Coded Schemes

- User data divided into blocks (symbols) of fixed size
 - Complemented with parity symbols
 - codewords

```
Data
S₁ S₂ ⋮ Sₗ
```
```
Codeword
Data
S₁ S₂ ⋮ Sₗ
Parity
S₁₊₁ ⋮ Sᵣ
```

- \((m,l)\) maximum distance separable (MDS) erasure codes
- Any subset of \(l\) symbols can be used to reconstruct the codeword
 - Replication: \(l = 1\) and \(m = r\)
 - RAID-5: \(m = l + 1\)
 - RAID-6: \(m = l + 2\)

- Storage efficiency: \(s_{\text{eff}} = \frac{l}{m}\) (Code rate)

- Google: Three-way replication (3,1) \(\rightarrow s_{\text{eff}} = 33\%\) to Reed-Solomon (9,6) \(\rightarrow s_{\text{eff}} = 66\%\)
- Facebook: Three-way replication (3,1) \(\rightarrow s_{\text{eff}} = 33\%\) to Reed-Solomon (14,10) \(\rightarrow s_{\text{eff}} = 71\%\)
- Microsoft Azure: Three-way replication (3,1) \(\rightarrow s_{\text{eff}} = 33\%\) to LRC (16,12) \(\rightarrow s_{\text{eff}} = 75\%\)
Media errors

- “bit rot” problem: the magnetism of a single bit or a few bits is flipped
 - This type of problem can often (but not always) be detected and corrected with low-level ECC embedded in the drive

- physical damage can occur on the media
 - head crash
 - media scratch

- Disk drives exhibit **unrecoverable sector errors** (latent sector faults)
 - a block or set of blocks are inaccessible
 - sectors are *corrupted silently* without the disk being able to detect it
 - a sector error is detected when the sector is accessed for storing or retrieving information

- Factors contributing to unrecoverable sector errors
 - increased areal density of disk drives
 - errors such as bit spillovers on adjacent tracks can corrupt more bits
 - increased use of cheap low-end desktop drives (Integrated Drive Electronics/Advanced Technology Attachment drives)
 - low cost, less tested, less machinery to handle disk errors
 - increased amount of software used on the storage stack
 - firmware on a desktop drive contains about 400 thousand lines of code
 - bugs are inevitable
Unrecoverable Errors and Data Loss

OBJECTIVE

To assess the extent of data loss due to disk failures and unrecoverable errors

RESULTS

- Theoretical assessment of the effect of latent errors on reliability
- Evaluation of MTTDL and EAFDL
 - Analytical approach that does not involve Markovian analysis
 - EAFDL and MTTDL tend to be insensitive to the failure time distributions
 - Real-world distributions, such as Weibull and gamma
Reliability Metrics – MTTDL and EAFDL

- Data loss events documented in practice by Yahoo!, LinkedIn, Facebook and Amazon
 - Amazon S3 (Simple Storage Service) is designed to provide 99.999999999% durability of objects over a given year
 - average annual expected loss of a fraction of 10^{-11} of the data stored in the system
- Assess the implications of system design choices on the
 - frequency of data loss events
 - Mean Time to Data Loss (MTTDL)
 - amount of data lost
 - Expected Annual Fraction of Data Loss (EAFDL)
 - I. Iliadis and V. Venkatesan,
 “Expected Annual Fraction of Data Loss as a Metric for Data Storage Reliability”, MASCOTS 2014
 - These two metrics provide a useful profile of the magnitude and frequency of data losses
Non-Markov Analysis for MTTDL and EAFDL

- EAFDL evaluated in parallel with MTTDL
 - \tilde{r}: Minimum number of device failures that may lead to data loss ($\tilde{r} = m - l + 1$)
 - e: Exposure Level: maximum number of symbols that any codeword has lost
 - T_i: Cycles (Fully Operational Periods / Repair Periods)
 - P_{DL}: Probability of data loss during repair period
 - Q: Amount of data lost upon a first-device failure
 - U: Amount of user data stored in a system comprised of n devices
 - $1/\lambda$: Mean Time to Failure (MTTF) of a device

\[
\text{MTTDL} = \sum_{i=1}^{m} \frac{E(T_i)}{P_{DL}} \approx \frac{1}{n \lambda P_{DL}} \quad \text{EAFDL} \approx \frac{n \lambda E(Q)}{U}
\]

- System evolution does not depend only on the latest state, but on the entire path
 - underlying models are not semi-Markov

MTTDL and EAFDL expressions obtained using non-Markov analysis
Redundancy Placement

Erasure code with codeword length 3

Clustered Placement

Declustered Placement
Device Failure and Rebuild Process

\[B_{\text{eff}} = \min(lb, B_{\text{max}}) \]

- **Clustered Placement**
- **Declustered Placement**

Reserved spare space

Distributed rebuild from \(\tilde{k} \) devices

Rebuild from \(l \) devices

\[B_{\text{eff}} = \min(\tilde{k}b, B_{\text{max}}) \]
System Model

- **Parameters**
 - n: number of storage devices
 - k: number of devices in a group
 - c: amount of data stored on each device
 - C: number of codeword symbols stored in a device
 - b: average reserved rebuild bandwidth per device

- $1/\lambda$: Mean Time to Failure (MTTF) of a device
 - General non-exponential failure distributions

- $1/\mu$: Time to read (or write) an amount of c data at a rate b from (or to) a device
 - $1/\mu = c / b$
 - Highly reliable devices: $\lambda /\mu << 1$
Device Failure and Rebuild Process

- No unrecoverable (latent) errors encountered during rebuild
 - Successful rebuild
Unrecoverable Failure during Rebuild Process

Rebuild from \(I \) devices

Lost symbols
D4, D1
G6, GP, G1
J2, J5, J7, J1

Data Lost
Theoretical Results

- \(n \): number of storage devices
- \(k \): group size (number of devices in a group)
- \(c \): amount of data stored on each device
- \((m,l)\): MDS erasure code
- \(b \): reserved rebuild bandwidth per device
- \(B_{\text{max}} \): Maximum network rebuild bandwidth per group of devices
- \(\frac{1}{\lambda} \): mean time to failure of a storage device
- \(P_s \): probability of an unrecoverable sector (symbol) error

\[
\begin{align*}
\text{MTTDL} & \approx \frac{1}{n \lambda P_{DL}} \\
\text{EAFDL} & \approx \frac{m \lambda E(Q)}{l c} \\
\end{align*}
\]

where

\[
\begin{align*}
P_{DL} & \approx P_{DF} + \sum_{u=1}^{\tilde{r}-1} P_{UF_u} \\
P_{UF_u} & \approx - (\lambda c)^{u-1} \frac{E(X^{u-1})}{[E(X)]^{u-1}} \left(\prod_{i=1}^{u-1} \frac{\tilde{n}_i}{b_i} V_i^{u-i} \right) \log(\hat{q}_u) - (u-1) \left(\hat{q}_u - \sum_{i=0}^{u-1} \frac{\log(\hat{q}_u)^i}{i!} \right) \\
P_{DF} & \approx (\lambda c)^{\tilde{r}-1} \frac{1}{(\tilde{r}-1)!} \frac{E(X^{\tilde{r}-1})}{[E(X)]^{\tilde{r}-1}} \prod_{i=1}^{\tilde{r}-1} \frac{\tilde{n}_i}{b_i} V_i^{\tilde{r}-i} \\
E(Q) & \approx E(Q_{DF}) + \sum_{u=1}^{\tilde{r}-1} E(Q_{UF_u}) \\
E(Q_{UF_u}) & \approx c \frac{l \tilde{r}}{m} (\lambda c)^{u-1} \frac{1}{u!} \frac{E(X^{u-1})}{[E(X)]^{u-1}} \left(\prod_{i=1}^{u-1} \frac{\tilde{n}_i}{b_i} V_i^{u-i} \right) (m - u) P_s^{\tilde{r}-u} \\
E(Q_{DF}) & \approx c \frac{l}{m} (\lambda c)^{\tilde{r}-1} \frac{1}{(\tilde{r}-1)!} \frac{E(X^{\tilde{r}-1})}{[E(X)]^{\tilde{r}-1}} \prod_{i=1}^{\tilde{r}-1} \frac{\tilde{n}_i}{b_i} V_i^{\tilde{r}-i}
\end{align*}
\]
Numerical Results

- \(n = 64 \) : number of storage devices
- \(c = 12 \text{ TB} \) : amount of data stored on each device
- \(s = 512 \text{ B} \) : sector size
- \(1/\lambda = 300,000 \text{ h} \) : MTTF
- \(b = 50 \text{ MB/s} \) : reserved rebuild bandwidth
 - \(1/\mu = c/b = 66.7 \text{ h} \) : MTTR
 - \(\lambda/\mu = 0.0002 \ll 1 \) : MTTR to MTTF ratio
- \(m = 16 \) : number of symbols per codeword
- \(P_s \) : \(P(\text{unrecoverable sector error}) \)

- Numerical results for two system configurations
 - Declustered placement
 - \(k = n = 64 \)
 - Clustered placement
 - \(k = 16 \)
 - System comprises 4 clustered groups
Effect of Latent Errors on MTDDL (declustered placement)

- MTDDL significantly degraded by the presence of latent errors
- Field measurements show P_s to be in the interval $[4.096 \times 10^{-11}, 5 \times 10^{-9}]$
Effect of Latent Errors on MTDDL (clustered placement)

- MTDDL significantly degraded by the presence of latent errors
- Field measurements show P_s to be in the interval $[4.096 \times 10^{-11}, 5 \times 10^{-9}]$
Effect of Latent Errors on EAFDL (declustered placement)

- EAFDL affected at high sector error probabilities
- EAFDL unaffected by the presence of latent errors in the region of practical interest
Effect of Latent Errors on EAFDL (clustered placement)

- EAFDL affected at high sector error probabilities
- EAFDL unaffected by the presence of latent errors in the region of practical interest
Summary

- Considered the reliability of erasure-coded storage systems in the presence of latent errors
- Assessed the MTTDL and EAFDL reliability metrics using a non-Markovian analysis
- Derived closed-form expressions for the MTTDL and EAFDL metrics
- Established that the declustered placement scheme offers superior reliability in terms of both metrics
- Demonstrated that for practical values of unrecoverable sector error probabilities
 - MTTDL is adversely affected by the presence of latent errors
 - EAFDL is practically unaffected by the presence of latent errors

Future Work

- The reliability evaluation of erasure-coded systems when device failures, as well as unrecoverable latent errors are correlated.