
Author: Geert Haerens

Presenter: Geert Haerens
Enterprise IT Architect @ Engie
PhD student at Antwerp University
geert.haerens@engie.com

Geert Haerens holds a degree in industrial engineering (electricity and automation) and civil engineering
(computer science and mechatronics). After having worked for 4 years at the NMBS and 8 years at AB Inbev, he
started working for Engie/Electrabel as an IT Architect. In his pursuit for professionalizing the work of the IT
Architect, he became a certified EA at the University of Carnegie Mellon and got his Master in Enterprise IT
Architect at the Antwerp Management School. In addition to his job at Engie, he is currently doing research at
the University of Antwerp on the applicability of the Normalized Systems theory on IT Infrastructure systems.

Content

Introduction: The TCP/IP Firewall and Normalized Systems

Artifact: Previous work and requirements

Problem: Relationships between rules

Demonstration

Evaluation

Conclusion

Artifact: Construction

Titre Présentation

Introduction

Introduction: The TCP/IP Firewall

What is it about?

Studies the evolvability of modular software systems.

Defines 4 theorems as the necessary conditions a modular structure must adhere to, for evolvability.

A systems is considered evolvable when it is stable under change.

Stable under changes = Bounded input leads to Bounded output.

A limited functional change (bounded input) must lead to a limited change in software modules (bounded output).

If not, a Combinatorial Effect is observed: change is proportional to the system itself.

Titre Présentation

The Problem

Problem: Relationships between rules

Titre Présentation

The Artifact

Artifact: Previous work and requirements

A “Green Field” Artifact:
Enforce disjointness of service definitions – use destination definitions that represent host/service combinations.
Provides and evolvable rule base with respect to anticipated changes.

A “Brown Field” Artifact:
Convert an existing rule base into an evolvale rule base
Necessary condition (not sufficient): disjoint Service Definitions

Artifact: Previous work and requirements
Break Relationships - Disentangling Services

Artifact: Iterated Local Search Metaheuristic

REPEAT:
Do a local search until a local optimum is reached
Perform a perturbation

UNTILL (Stop Condition)

Artifact: Algorithm components
• Port Frequencies: how many times is a port used in service definitions.
• Disjointness Index: sum of all Port Frequencies of a service definition, divided by

the number of ports.

• Initial Solution: a give rule base – the service definitions
• Neighbourhood: DI of all service definitions
• Objective Function: Sum of the DI’s of all service definitions in the solution
• Move Type: Split a service – carve out all existing subgroups
• Move Strategy: Split service with highest DI
• Perturbation: Split service – according to overlap
• Stop Conditions: full neighbourhood searched, full disjointness reached

Artifact: Move – subgroup carve out

Always improves (= decent) the Objective Function = SUM of DI

Artifact: Perturbation – intersect carve out

Sometimes improves (= decent) the Objective Function = SUM of DI

Artifact: Iterated Local Search
While (end conditions not reached)

While (there are still subgroups)
Do a full cave out

Make a perturbation
result

Titre Présentation

Demonstration

Demonstration

3 Data sets are used:

• A Demo set: including a lot of exceptions

• A Tractebel set: operational firewall connecting a branch office to the company network

• A Engie IT DC set: operational firewall connecting tooling and management systems to
client systems

Demonstration – demo set

Start: OF = 110, services = 28
Stop: OF = 34, services = 34

Demonstration – Tractebel set

Start: OF = 278, services = 79
Stop: OF = 62, services = 62

Demonstration – Engie IT set

Start: OF = 3876, services = 459
Stop: OF = 418, services = 418

Titre Présentation

Evaluation

Evaluation

• Big O = n³

• Splitting services = impacting rules → how much extra rules?

• Essential building block for evolvable rule base creator
• Destination splitting to be developed.

• Potential Improvement
• Memory, performance optimizations.

• Global Optimum?

Titre Présentation

Conclusion

Conclusion

• Splitting Services = applying SoC.
• Resulting in fine grained rule base – fine grained modular structure with low coupling.

• The algorithm works

• The algorithm needs extension:
• adjust rules → already done – rule base increases with an order of magnitude
• Redefine destinations → to be done

engie.com

THANK YOU

geert.haerens@engie.com

