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Introduction: The TCP/IP Firewall



What is it about?

Studies the evolvability of modular software systems.

Defines 4 theorems as the necessary conditions a modular structure must adhere to, for evolvability.

A systems is considered evolvable when it is stable under change.

Stable under changes = Bounded input leads to Bounded output.

A limited functional change (bounded input) must lead to a limited change in software modules (bounded output).

If not, a Combinatorial Effect is observed: change is proportional to the system itself.
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Problem: Relationships between rules
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Artifact: Previous work and requirements

A “Green Field” Artifact:
Enforce disjointness of service definitions – use destination definitions that represent host/service combinations.
Provides and evolvable rule base with respect to anticipated changes.

A “Brown Field” Artifact: 
Convert an existing rule base into an evolvale rule base
Necessary condition (not sufficient): disjoint Service Definitions



Artifact: Previous work and requirements
Break Relationships - Disentangling Services



Artifact: Iterated Local Search Metaheuristic

REPEAT:
Do a local search until a local optimum is reached
Perform a perturbation

UNTILL (Stop Condition)



Artifact: Algorithm components
• Port Frequencies: how many times is a port used in service definitions.
• Disjointness Index: sum of all Port Frequencies of a service definition, divided by 

the number of ports.

• Initial Solution: a give rule base – the service definitions
• Neighbourhood: DI of all service definitions
• Objective Function: Sum of the DI’s of all service definitions in the solution
• Move Type: Split a service – carve out all existing subgroups
• Move Strategy: Split service with highest DI
• Perturbation: Split service – according to overlap  
• Stop Conditions: full neighbourhood searched, full disjointness reached



Artifact: Move – subgroup carve out

Always improves (= decent) the Objective Function  = SUM of DI 



Artifact: Perturbation – intersect carve out

Sometimes  improves (= decent) the Objective Function  = SUM of DI 



Artifact: Iterated Local Search
While (end conditions not reached)

While (there are still subgroups)
Do a full cave out

Make a perturbation
result
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Demonstration

3 Data sets are used:

• A Demo set: including a lot of exceptions

• A Tractebel set: operational firewall connecting a branch office to the company network

• A Engie IT DC set: operational firewall connecting tooling and management systems to 
client systems



Demonstration – demo set

Start: OF = 110, services = 28
Stop: OF = 34, services = 34



Demonstration – Tractebel set

Start: OF = 278, services = 79
Stop: OF = 62, services = 62



Demonstration – Engie IT set

Start: OF = 3876, services = 459
Stop: OF = 418, services = 418
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Evaluation

• Big O = n³

• Splitting services = impacting rules → how much extra rules?

• Essential building block for evolvable rule base creator
• Destination splitting to be developed.

• Potential Improvement
• Memory, performance optimizations.

• Global Optimum?
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Conclusion

• Splitting Services = applying SoC.
• Resulting in fine grained rule base – fine grained modular structure with low coupling.

• The algorithm works

• The algorithm needs extension:
• adjust rules → already done – rule base increases with an order of magnitude
• Redefine destinations → to be done
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