
Keynote Speech at the 13th International Conference on Evolving Internet
(INTERNET 2021)

July 18 – 22, 2021, Nice, France

Machine Learning for Distributed Software Networks (SDN)

Kin K. Leung
Electrical & Electronic Engineering, and Computing Departments

Imperial College, London
www.commsp.ee.ic.ac.uk/~kkleung

Acknowledgment: Spike Zhang (Amazon; formerly Imperial),
Liang Ma (Dataminr; formerly IBM U.S.), Paul Pritz (Imperial),

Kostas Poularakis and Leandros Tassiulas (Yale University),

and Elisa Bertino (Purdue University)

Queen’s Tower
Imperial College

Keynote Speaker: Professor Kin K. Leung

2

§  Education and employment
-  Ph.D. from University of California, Los Angeles (1985)
-  AT&T / Lucent Technologies Bell Labs (1986-2004)
-  Imperial College London (2004 – now)

§  Research interests
-  Communications and computer networks
- Machine learning for communications/computer networks
- Wireless communications and cross-layer designs
- Optimization, stochastic models and queueing theory

§  Major honors and awards
-  IEEE Fellow, IET Fellow, Member of Academia Europaea
-  Bell Labs Distinguished Technical Staff Award (1994)
-  Royal Society Wolfson Research Merits Award (2004-09)
-  IEEE ComSoc Leonard G. Abraham Prize (2021)
-  Best paper awards at IEEE ICC 2019, ICDCS 2013,

PIMRC 2012
-  Chairman, IEEE Fellow Evaluation Committee for

ComSoc (2012-15)
-  Editor for 10+ IEEE and ACM journals

Professor Kin K. Leung
Imperial College

U.S.-UK International Technology Alliance (ITA)

3

§  ITA Programs Sponsored by U.S. Army & UK Dstl
-  Consortium leader: IBM U.S. & UK
-  NIS ITA: $92M (2006-16)
-  DAIS ITA: $40M (2016-21)
-  Now, 14 universities and industrial companies in U.S. & UK

§  Aim: Develop new communications and computation
infrastructures for coalition defense operations

§  Software defined
coalition (SDC)
-  Communications
-  Servers
-  Storage
-  Databases

§  Secure, mobile,
distributed analytics

§  Edge computing

P
3

Software Defined Coalition (SDC)

4

§  Key Technical Challenges for SDC
-  Controller synchronization: Domain

controllers need to exchange status info
for resource sharing across domains

-  Techniques for resource allocation and
sharing across domains

-  Use SDC for machine learning
applications

-  See SDC article by Kin Leung at https://
dais-ita.org/pub

§  Software Defined Coalition (SDC)
-  Architecture proposed by DAIS ITA Program

https://dais-ita-org/pub
-  Extension of Software Defined Network

(SDN), which focuses on communications
-  Resources (e.g., communication links,

servers, storage) are grouped into domains
-  Resources in each domain are monitored

and shared by a single domain controller,
changeable through software, thus
providing re-configurability and adaptability

-  Connect domains from owners to form SDC
for a set of applications

What Is a Cloud?

Source: https://en.wikipedia.org/wiki/Cloud_computing

The NIST definition:

“Cloud computing is a model for
enabling ubiquitous, convenient, on-
demand network access to a
shared pool of configurable
computing resources (e.g.,
networks, servers, storage,
applications, and services) that can
be rapidly provisioned and released
with minimal management effort or
service provider interaction.”
Source:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Example cloud-powered applications:
•  Google map (map service)
•  Dropbox (storage & content sharing)
•  YouTube & Netflix (video streaming + encoding/decoding)

5

Cloud SDC

SDN

Markov Decision Process (MDP) for Reinforcement Learning (RL)

§  Markov Decision Process (MDPP)
- S : Set of states, A: Set of actions
- P : State transition probability matrix

- R : Reward function

-  : Discount factor between 0 and 1

§  RL: Learning and control
- Model-based or model free

§  Major problems
- Explosion of state-action space
- Require huge datasets & time for deep Q-learning and policy designs

(S,A,P,R,γ)

PSS '
a = P[St+1 = s ' | St = s,At = a]

RS
a = E[Rt+1 | St = s,At = a]

γ

Possible solutions: State-action separation, state-action embedding,
state decomposition, MDP decentralization, hierarchical RL, etc. 6

SDN / SDC Controller Synchronization

Each domain consists of network elements
(e.g., switches, links, servers, databases)
within a given administrative control

Software-defined Coalition (SDC) consists of a
set of connected domains

Network control functionalities reside on domain
controllers, one for each domain =>
distributed SDC

SDN domain controllers update each other from
time to time with their current domain status
=> controller synchronization

Always up-to-date synchronization among
controllers infeasible due to high overheads

Question: What is a good controller
synchronization policy (when and which
controllers to sync) for the given
performance metric and synchronization
budget?

	

7

SDC: Software Defined Coalition

8

Controller Synchronization: A Routing Example

§  A source node in A1 constantly sends data to a destination node in A8
§  Controller A1 constructs the path and establish a forwarding rule according

to its view of the network
§  Topologies and link conditions in all domains change over time, but at

different rates (e.g., 5 edges rewire per second)
§  Controller in A1 can only sync with one other domain every several

seconds
Question: How does the controller in A1 decide which domain and when to

synchronize with for optimizing routing performance (e.g., minimizing the
number of hops in communication path)?

domain A1 A2 A3 A4 A5 A6 A7 A8

How can RL help controller sychronization?

9

Source domain controller

 Domains with dynamic topological changes

Sync’ decisions

Benefit
of sync

Past sync’ decisions

Markov Decision Process (MDP) Formulation

10

State: Vector of time elapsed since last time A1 synchronizes with other domains

Action: Which domain to sync with?

Immediate reward: Reduction in transit delays after synchronization
The goal of the agent: Maximize

domain A1 A2 A3 A4 A5 A6 A7 A8

5 10 15 5 35 20 40

0 0 0 0 1 0 0

Q-function for evaluating a synchronization policy

11

Maximize:

Bellman equation

§  Specifically, the value (Q) function following policy π looks like this

§  Iterative value update to obtain the optimal Q-function

§  The optimal value function for each state-action pair is

Approximate Q-function by Deep Neural Network (DNN)

12

§  Excessive size of the state-action space makes it impossible to store Q-

values in a tabular setting
§  Use Deep Neural Network (DNN) with weights w to approximate the Q-

function

§  Then, the goal is to train weights w of the DNN so that

§  The optimal policy is found when the following loss function (gap) is

minimized close to 0

Experimental Evaluation of RL Controller Synchronization

13

§  Three scenarios with 6, 10, and 12 domains, respectively
§  Domain topologies generated by using data extracted from

Rocketfuel dataset
§  Different patterns of dynamic link changes for domains
§  Performance benchmarks for comparison
- Anti-entropy algorithm (implemented in ONOS controller)
- Fixed synchronization period

§  Performance metric
- Accumulated time-discounted transit delay reductions over time

Evaluation Results

Compared with anti-entropy and fix sync, the proposed RL is:

6 domains 10 domains 12 domains

10

Optimization Goal

Observations:
§  Superiority of the DQ

scheduler for long and
short-term routing quality

§  Performance degradation
due to lack of
synchronization is more
severe when domain-wise
path is longer, as “no
sync” performance are
worsened by 37.5%,
59.1%, and 61%,
respectively

31% & 91%
better

58% & 90%
better

95% & 173%
better

15

§  Big Challenge of RL for control of large communications and computer
infrastructures
- Huge state and action spaces
- Excessive training / learning time, if possible

§  Solution techniques include
- State-action separable RL (sasRL)
- Joint state-action embeddings
- State space decomposition
- Decentralized MDP
- Hierarchical RL
- ….

RL Challenges and Possible Solutions

Background: Serial Decision-Making Problems and RL-
based Solutions

16

§  Serial decision-making problems can be described by a
series of tuples consisting of the following elements
- State: the agent’s perception of the environment
- Action: what the agent does (the agent’s action policy)
- Reward: what the agent earns after taking actions

§  RL methods guide the agent to behave in certain ways by
reinforcing good behaviors (actions) and penalizing bad
ones (think about how human/animals learn)

§  Conventionally, the goal of RL methods is to maximize the
cumulative reward received by the agent

§  Two types of RL method
- Model-based: Explicitly use a model of the

environment to assist the agent’s learning process
(e.g., planning based on dynamic programming)

- Model-free: It does not require nor depend on any
explicit environment model (most mainstream RL
algorithms)

An example serial decision-making problem

RL agent’s interaction with the
env.

Image credit:
https://lilianweng.github.io/

Conventional Approach to RL Problems

Conventional Approach to RL Problems
§  Value function: Estimate the goodness of RL

agent’s behaviors
§  Conventionally, State + Action à Reward;

 State-Action-Value (SAV) function is used:

§  Why most existing RL algorithms use the SAV
function to derive and evaluate policies?
-  State-Action pairs directly define the environment

and the agent’s behaviors
-  Implicitly, it is assumed that the reward of a state

transition is a function of current state and action,
which is generally true

17

What is the problem using SAV function?
§  Enormous state action space (combinatorial

increase in size)

§  For many problems, the next state of the state
transition matters more than the action for
determining rewards

§  For instance, think about the following example

18

A New Value-Function Approach for RL Problems

Our proposal: State Transition-based
Value Function for RL Problems

§  State + Next state à Reward; State-
Transition-Value (STV) function

§  STV function: Estimate the goodness
of state-next state combinations

§  STV function better captures the
return dynamics for problems where
reward is directly related to the state
transition, and action only causes the
transition

R : Rss0 = E[rt+1|st = s, st+1 = s0]

<latexit sha1_base64="otkr0G6URhiZS07cLjdBPxauWks=">AAACL3icbVBNS8NAEN34WetX1aOXxSIVlJJIoSIUiqJ4rGKr0Iaw2W51cfPBzkYoMf/Ii3+lFxFFvPov3KQ51OqDZd+8mWFmnhsKDso034yZ2bn5hcXCUnF5ZXVtvbSx2YEgkpS1aSACeesSYIL7rK24Euw2lIx4rmA37sNpmr95ZBJ44F+rYchsj9z5fMApUVpySuc9j6h7SkR8lRzjicCJASpJI1NcNz5LutKJ1b6VPIH+kwYcwDhuQMUuOqWyWTUz4L/EykkZ5Wg5pVGvH9DIY76iggB0LTNUdkyk4lSwpNiLgIWEPpA71tXUJx4DO87uTfCuVvp4EEj9fIUzdbIjJh7A0HN1Zbo+TOdS8b9cN1KDIzvmfhgp5tPxoEEksApwah7uc8moEkNNCJVc74rpPZGEKm1xaoI1ffJf0jmsWrVq/bJWbp7kdhTQNtpBe8hCddREF6iF2oiiZzRC7+jDeDFejU/ja1w6Y+Q9W+gXjO8fYz+p1Q==</latexit>

State-Action Separable RL (sasRL)

§  STV function only involves the state space,
but not the state-action space à STV
simpler than SAV

§  The dynamic of state + action à next state
dynamic can be learned separately, using
simple supervised learning techniques

§  The light-weight transition model
-  parameterized by DNN

weights
-  The model is trained via supervised

learning to minimize

!

<latexit sha1_base64="R2UlKeWrMIPZT3fsvZXwegg9Kg8=">AAAB+nicbVBLSwMxGMzWV62vrR69BIvgqexKoR6LXjxWsA9ol5LNZtvQPJYkq5S1P8WLB0W8+ku8+W/MtnvQ1oGQYeb7yGTChFFtPO/bKW1sbm3vlHcre/sHh0du9birZaow6WDJpOqHSBNGBekYahjpJ4ogHjLSC6c3ud97IEpTKe7NLCEBR2NBY4qRsdLIrQ5DySI94/YaSk7GaOTWvLq3AFwnfkFqoEB75H4NI4lTToTBDGk98L3EBBlShmJG5pVhqkmC8BSNycBSgTjRQbaIPofnVolgLJU9wsCF+nsjQ1zn6ewkR2aiV71c/M8bpCa+CjIqktQQgZcPxSmDRsK8BxhRRbBhM0sQVtRmhXiCFMLGtlWxJfirX14n3cu636g37xq11nVRRxmcgjNwAXzQBC1wC9qgAzB4BM/gFbw5T86L8+58LEdLTrFzAv7A+fwBwziUVw==</latexit>

L! = L(⌧!(s, s
0), a)

<latexit sha1_base64="xock4w14oYfFH3zrxHf7Qswx8uQ=">AAACNHicbVDLSsNAFJ34rPVVdelmsIgtlJKIoBtBdCPYhYJ9QFPKzXTSDk4yYWYilJCPcuOHuBHBhSJu/QYnNQttPTDM4Zx7ufceL+JMadt+sebmFxaXlgsrxdW19Y3N0tZ2S4lYEtokggvZ8UBRzkLa1Exz2okkhcDjtO3dXWR++55KxUR4q8cR7QUwDJnPCGgj9UtXbgB6RIAnjbSfuJ7gAzUOzJe4IqBDSFN8ihu44mqI//crqqYOqjWoFvulsl23J8CzxMlJGeW47pee3IEgcUBDTTgo1XXsSPcSkJoRTtOiGysaAbmDIe0aGkJAVS+ZHJ3ifaMMsC+keaHGE/V3RwKBylY1ldmJatrLxP+8bqz9k17CwijWNCQ/g/yYYy1wliAeMEmJ5mNDgEhmdsVkBBKINjlnITjTJ8+S1mHdOaof3xyVz87zOApoF+2hCnLQMTpDl+gaNRFBD+gZvaF369F6tT6sz5/SOSvv2UF/YH19AzWxq6w=</latexit>

19

sasRL Architecture

State s

Policy

STV
FunctionNext

state s’

Next state
evaluation

State s
Next

state s’

Transition Model

Action a

State s Policy

Transition Model

Action a

Next state s’

Model-free RL:
Train the STV function

Model-based
supervised
learning to

assist RL task

sasRL in operation

State-Action Separable RL (sasRL) transforms a complex
RL problem into a simpler RL problem and a simple
supervised learning problem

Comparing sasRL with Other RL Algorithms

20

Model-based
RL Model-free RL sasRL

Symbol

Env.
model

needed?
Full env. model No

Light-weight
transition

model

Value
function SAV SAV STV

Learning
bottleneck

SAV,
env. model SAV n/a

Pros

1) Less
interactions with

env. 2) Fuller
use of data

1) Simple, direct
2) No bias

(caused by env.
model)

Address 2
bottlenecks by:

1) define &
employ more
efficient STV

function
2) a light-

weight
transition

model

Cons Env. model
difficult to train Inefficient

Examples Dyna-Q
Q-learning,

DQN, DDPG,
SAC

Comparative Evaluation Results

21

Gird world exit Berzerk Slot machine

§  Remarks on comparative evaluation results
- sasRL performance is consistently superior
- PPO (Proximal Policy Optimization Algorithm) fails in all three scenarios
- SAC (Soft Actor-Critic) produces the most stable results on average
- DDPG (Deep Deterministic Policy Gradient) outperforms SAC in two cases,

but is unstable and brittle

sasRL+Transfer Learning for Environment Changes

22

§  Joint Reinforcement and Transfer Learning (RL+TL)
-  Consider SDC fragmentation with 2 domains, focusing on data servers
-  Combine RL (e.g., sasRL) and TL based on generative adversary

network (GAN) to synthesize data for learning in new environments
-  Combined RL+TL can significantly speed up RL when operating

environment changes (e.g., SDC domain fragmentation and re-
connection)

Note:
-  The reward is inversely

proportional to the service
delay

-  Real Explorations = 10,000
data samples

-  Augmented (RL+TL) or
Limited Explorations = 100
data samples (1% of Real
Exploration sample size)

Summary of Key Features of sasRL

23

§  RL problem formulation under sasRL: modified
Markov Reward Process (mMRP), in contrast to
commonly used MDP

§  Value function: state-transition-value (STV)
function, instead of commonly used state-action-
value-function (SAV) function

§  Convergence property analysis: STV function’s
convergence time is , where T is the
convergence time for updating SAV function,
and k is a weighting factor

§  Model-free learning for the STV function, model-
based learning for the transition model; two
training process can take place separately (thus
enables parallelism)

§  sasRL enables the concurrent optimizations
of both STV function and policy (e.g., suitable
for the actor-critic framework)

§  The STV function, policy and transition model
for sasRL can be approximated by DNNs
–  DNN for STV function is easier to train than

that of SAV function, due to reduced input
vector space size

–  The transition model is easy to train via
mature and standard supervised learning
routines

§  In summary, sasRL achieves better
performance by breaking down an
inefficiency-prone model-free RL problem into
a more sample efficient and easier to train
model-free RL problem and a simple
supervised learning problem

O(T 1/k)

<latexit sha1_base64="4nIMaCSkQ/0QyIGLcu/cq8xkBWo=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahXmoihXosevFmhX5hG8tmu2mXbjZhdyOU0H/hxYMiXv033vw3btMctPXBwOO9GWbmeRFnStv2t5VbW9/Y3MpvF3Z29/YPiodHbRXGktAWCXkoux5WlDNBW5ppTruRpDjwOO14k5u533miUrFQNPU0om6AR4L5jGBtpIe7cvMxcS4ms/NBsWRX7BRolTgZKUGGxqD41R+GJA6o0IRjpXqOHWk3wVIzwums0I8VjTCZ4BHtGSpwQJWbpBfP0JlRhsgPpSmhUar+nkhwoNQ08ExngPVYLXtz8T+vF2v/yk2YiGJNBVks8mOOdIjm76Mhk5RoPjUEE8nMrYiMscREm5AKJgRn+eVV0r6sONVK7b5aql9nceThBE6hDA7UoA630IAWEBDwDK/wZinrxXq3PhatOSubOYY/sD5/ADmhj/0=</latexit>

Hierarchical RL for Control of Large System

24

Subsystem 1
(RL state
space 1)

Subsystem 2
(RL state
space 2)

Subsystem K
(RL state
space K)

…

Hierarchical, global RL of all state spaces 1 to K

§  SDC is a large system of many subsystems (domains), each subsystem with its
own state subspace controlled by an RL agent

§  The global RL agent interacts with subsystem agents to control the whole
system – tightly-coupled hierarchical RL

§  Open issues:
-  Compress states and actions to avoid space explosion for the global agent
-  Control policies for multi-agents

Acknowledgments
§  Acknowledgments

§  Spike Zhang (Amazon; formerly Imperial), Liang Ma (Dataminr; formerly IBM
U.S.), Paul Pritz (Imperial), Kostas Poularakis and Leandros Tassiulas (Yale
University), and Elisa Bertino (Purdue University)

§  Research funding: U.S./U.K. ITA Project
§  Publications

1.  Z. Zhang, L. Ma, K.K. Leung, F. Le, S. Kompella and L. Tassiulas, “How Advantageous Is It? An Analytical
Study of Controller-Assisted Path Construction in Distributed SDN,” IEEE/ACM Trans. on Networking, 2019.

2.  Z. Zhang, L. Ma, K.K. Leung, and F. Le, “More Is Not Always Better: An Analytical Study of Controller
Synchronizations in Distributed SDN,” IEEE/ACM Trans. on Networking, 2021.

3.  Z. Zhang, L. Ma, K. Poularaki, K.K. Leung and L. Wu, “DQ Scheduler: Deep Reinforcement Learning Based
Controller Synchronization in Distributed SDN,” IEEE ICC, China, June 2019. (Best Paper Award)

4.  Z. Zhang, L. Ma, K Poularakis, K.K. Leung, J. Tucker and A. Swami, “MACS: Deep Reinforcement Learning
based SDN Controller Synchronization Policy Design,” IEEE ICNP, USA, October 2019.

5.  Z. Zhang, L. Ma, K.K. Leung, K. Poularakis, and M. Srivatsa, “State Action Separable Reinforcement
Learning,” IEEE BigData 2020.

6.  Z. Zhang, A. Mudgerikar, A. Singla, K. Leung, E. Bertino, D. Verma, K. Chan, J. Melrose, and J. Tucker,
“Reinforcement and Transfer Learning for Distributed Analytics in Fragmented Software Defined Coalitions,”
SPIE, April 2021, Florida.

7.  P. Pritz, L. Ma and K.K. Leung, “Joint Sate-Action Embedding for Efficient Reinforcement Learning,”
submitted for publication.

Please google “Kin K Leung” for my website to find these and other papers.

25

U.S.
Gov.

Industry

Academia

U.K.
Gov.

