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§  Education and employment  
-  Ph.D. from University of California, Los Angeles (1985) 
-  AT&T / Lucent Technologies Bell Labs (1986-2004) 
-  Imperial College London (2004 – now) 

§  Research interests 
-  Communications and computer networks 
- Machine learning for communications/computer networks 
- Wireless communications and cross-layer designs 
- Optimization, stochastic models and queueing theory 

§  Major honors and awards 
-  IEEE Fellow, IET Fellow, Member of Academia Europaea 
-  Bell Labs Distinguished Technical Staff Award (1994) 
-  Royal Society Wolfson Research Merits Award (2004-09) 
-  IEEE ComSoc Leonard G. Abraham Prize (2021) 
-  Best paper awards at IEEE ICC 2019, ICDCS 2013, 

PIMRC 2012 
-  Chairman, IEEE Fellow Evaluation Committee for 

ComSoc (2012-15) 
-  Editor for 10+ IEEE and ACM journals 

Professor Kin K. Leung 
Imperial College 



U.S.-UK International Technology Alliance (ITA)  
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§  ITA Programs Sponsored by U.S. Army & UK Dstl 
-  Consortium leader: IBM U.S. & UK 
-  NIS ITA: $92M (2006-16) 
-  DAIS ITA: $40M (2016-21) 
-  Now, 14 universities and industrial companies in U.S. & UK 

§  Aim: Develop new communications and computation 
infrastructures for coalition defense operations 

§  Software defined 
coalition (SDC) 
-  Communications 
-  Servers 
-  Storage 
-  Databases 

§  Secure, mobile, 
distributed analytics 

§  Edge computing 



P
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Software Defined Coalition (SDC) 
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§  Key Technical Challenges for SDC 
-  Controller synchronization: Domain 

controllers need to exchange status info 
for resource sharing across domains                 

-  Techniques for resource allocation and 
sharing across domains 

-  Use SDC for machine learning 
applications 

-  See SDC article by Kin Leung at https://
dais-ita.org/pub 

§  Software Defined Coalition (SDC) 
-  Architecture proposed by DAIS ITA Program 

https://dais-ita-org/pub 
-  Extension of Software Defined Network 

(SDN), which focuses on communications 
-  Resources (e.g., communication links, 

servers, storage) are grouped into domains 
-  Resources in each domain are monitored 

and shared by a single domain controller, 
changeable through software, thus 
providing re-configurability and adaptability 

-  Connect domains from owners to form SDC 
for a set of applications 



What Is a Cloud? 

Source: https://en.wikipedia.org/wiki/Cloud_computing 

The NIST definition:  
 

“Cloud computing is a model for 
enabling ubiquitous, convenient, on-
demand network access to a 
shared pool of configurable 
computing resources (e.g., 
networks, servers, storage, 
applications, and services) that can 
be rapidly provisioned and released 
with minimal management effort or 
service provider interaction.” 
Source:  
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf 

Example cloud-powered applications:  
•  Google map (map service) 
•  Dropbox (storage & content sharing) 
•  YouTube & Netflix (video streaming + encoding/decoding) 
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Cloud SDC 

SDN 



Markov Decision Process (MDP) for Reinforcement Learning (RL) 

§  Markov Decision Process (MDPP) 
- S : Set of states, A: Set of actions 
- P : State transition probability matrix 

 
- R : Reward function 

 
-     : Discount factor between 0 and 1 

§  RL: Learning and control 
- Model-based or model free 

§  Major problems 
- Explosion of state-action space 
- Require huge datasets & time for deep Q-learning and policy designs 

(S,A,P,R,γ )

PSS '
a = P[St+1 = s ' | St = s,At = a]

RS
a = E[Rt+1 | St = s,At = a]

γ

Possible solutions: State-action separation, state-action embedding, 
state decomposition, MDP decentralization, hierarchical RL, etc. 6 



SDN / SDC Controller Synchronization 

Each domain consists of network elements 
(e.g., switches, links, servers, databases) 
within a given administrative control 

Software-defined Coalition (SDC) consists of a 
set of connected domains 

Network control functionalities reside on domain 
controllers, one for each domain => 
distributed SDC  

SDN domain controllers update each other from 
time to time with their current domain status  
=> controller synchronization  

Always up-to-date synchronization among 
controllers infeasible due to high overheads 

Question: What is a good controller 
synchronization policy (when and which 
controllers to sync) for the given 
performance metric and synchronization 
budget? 
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SDC: Software Defined Coalition  
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Controller Synchronization: A Routing Example 

§  A source node in A1 constantly sends data to a destination node in A8 
§  Controller A1 constructs the path and establish a forwarding rule according 

to its view of the network 
§  Topologies and link conditions in all domains change over time, but at 

different rates (e.g., 5 edges rewire per second) 
§  Controller in A1 can only sync with one other domain every several 

seconds 
Question: How does the controller in A1 decide which domain and when to 

synchronize with for optimizing routing performance (e.g., minimizing the 
number of hops in communication path)? 

 

domain A1 A2 A3 A4 A5 A6 A7 A8 



How can RL help controller sychronization? 
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Source domain controller 

 Domains with dynamic topological changes 

Sync’ decisions 

Benefit  
of sync 

Past sync’ decisions 



Markov Decision Process (MDP) Formulation 
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State: Vector of time elapsed since last time A1 synchronizes with other domains 
 
 
Action: Which domain to sync with?  
 
 
Immediate reward: Reduction in transit delays after synchronization 
The goal of the agent: Maximize  

domain A1 A2 A3 A4 A5 A6 A7 A8 

5 10 15 5 35 20 40 

0 0 0 0 1 0 0 



Q-function for evaluating a synchronization policy 
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Maximize:  

Bellman equation 

§  Specifically, the value (Q) function following policy π looks like this 

§  Iterative value update to obtain the optimal Q-function 

§  The optimal value function for each state-action pair is 



Approximate Q-function by Deep Neural Network (DNN) 
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§  Excessive size of the state-action space makes it impossible to store Q-

values in a tabular setting 
§  Use Deep Neural Network (DNN) with weights w to approximate the Q-

function 
 
 
§  Then, the goal is to train weights w of the DNN so that  
 
 
 
§  The optimal policy is found when the following loss function (gap) is 

minimized close to 0 
 



Experimental Evaluation of RL Controller Synchronization  
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§  Three scenarios with 6, 10, and 12 domains, respectively  
§  Domain topologies generated by using data extracted from 

Rocketfuel dataset 
§  Different patterns of dynamic link changes for domains  
§  Performance benchmarks for comparison 
- Anti-entropy algorithm (implemented in ONOS controller) 
- Fixed synchronization period  

§  Performance metric 
- Accumulated time-discounted transit delay reductions over time 



Evaluation Results 

Compared with anti-entropy and fix sync, the proposed RL is: 

6 domains 10 domains 12 domains 
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Optimization Goal 

Observations: 
§  Superiority of the DQ 

scheduler for long and 
short-term routing quality   

§  Performance degradation 
due to lack of 
synchronization is more 
severe when domain-wise 
path is longer, as “no 
sync” performance are 
worsened by 37.5%, 
59.1%, and 61%, 
respectively 

31% & 91% 
better 

58% & 90% 
better 

95% & 173% 
better 
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§  Big Challenge of RL for control of large communications and computer 
infrastructures  
- Huge state and action spaces 
- Excessive training / learning time, if possible 

§  Solution techniques include 
- State-action separable RL (sasRL) 
- Joint state-action embeddings 
- State space decomposition 
- Decentralized MDP 
- Hierarchical RL 
- …. 

RL Challenges and Possible Solutions 



Background: Serial Decision-Making Problems and RL-
based Solutions 
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§  Serial decision-making problems can be described by a 
series of tuples consisting of the following elements 
- State: the agent’s perception of the environment 
- Action: what the agent does (the agent’s action policy) 
- Reward: what the agent earns after taking actions 

§  RL methods guide the agent to behave in certain ways by 
reinforcing good behaviors (actions) and penalizing bad 
ones (think about how human/animals learn) 

§  Conventionally, the goal of RL methods is to maximize the 
cumulative reward received by the agent 

§  Two types of RL method 
- Model-based: Explicitly use a model of the 

environment to assist the agent’s learning process 
(e.g., planning based on dynamic programming) 

- Model-free: It does not require nor depend on any 
explicit environment model (most mainstream RL 
algorithms) 

An example serial decision-making problem 

RL agent’s interaction with the 
env. 

Image credit: 
https://lilianweng.github.io/ 



Conventional Approach to RL Problems 

Conventional Approach to RL Problems 
§  Value function: Estimate the goodness of RL 

agent’s behaviors  
§  Conventionally, State + Action à Reward; 

 State-Action-Value (SAV) function is used: 

 

§  Why most existing RL algorithms use the SAV 
function to derive and evaluate policies? 
-  State-Action pairs directly define the environment  

and the agent’s behaviors 
-  Implicitly, it is assumed that the reward of a state 

transition is a function of current state and action, 
which is generally true 
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What is the problem using SAV function? 
§  Enormous state action space (combinatorial 

increase in size) 

§  For many problems, the next state of the state 
transition matters more than the action for 
determining rewards 

§  For instance, think about the following example 
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A New Value-Function Approach for RL Problems 

Our proposal: State Transition-based 
Value Function for RL Problems 

§  State + Next state à Reward; State-
Transition-Value (STV) function  

§  STV function: Estimate the goodness 
of state-next state combinations 

 

§  STV function better captures the 
return dynamics for problems where 
reward is directly related to the state 
transition, and action only causes the 
transition 

R : Rss0 = E[rt+1|st = s, st+1 = s0]

<latexit sha1_base64="otkr0G6URhiZS07cLjdBPxauWks="></latexit>

State-Action Separable RL (sasRL) 

§  STV function only involves the state space, 
but not the state-action space à STV 
simpler than SAV 

§  The dynamic of state + action à next state 
dynamic can be learned separately, using 
simple supervised learning techniques 

§  The light-weight transition model  
-                        parameterized by DNN 

weights  
-  The model is trained via supervised 

learning to minimize  

!

<latexit sha1_base64="R2UlKeWrMIPZT3fsvZXwegg9Kg8=">AAAB+nicbVBLSwMxGMzWV62vrR69BIvgqexKoR6LXjxWsA9ol5LNZtvQPJYkq5S1P8WLB0W8+ku8+W/MtnvQ1oGQYeb7yGTChFFtPO/bKW1sbm3vlHcre/sHh0du9birZaow6WDJpOqHSBNGBekYahjpJ4ogHjLSC6c3ud97IEpTKe7NLCEBR2NBY4qRsdLIrQ5DySI94/YaSk7GaOTWvLq3AFwnfkFqoEB75H4NI4lTToTBDGk98L3EBBlShmJG5pVhqkmC8BSNycBSgTjRQbaIPofnVolgLJU9wsCF+nsjQ1zn6ewkR2aiV71c/M8bpCa+CjIqktQQgZcPxSmDRsK8BxhRRbBhM0sQVtRmhXiCFMLGtlWxJfirX14n3cu636g37xq11nVRRxmcgjNwAXzQBC1wC9qgAzB4BM/gFbw5T86L8+58LEdLTrFzAv7A+fwBwziUVw==</latexit>

L! = L(⌧!(s, s
0), a)

<latexit sha1_base64="xock4w14oYfFH3zrxHf7Qswx8uQ="></latexit>
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sasRL Architecture 

State s

Policy 

STV
FunctionNext 

state s’

Next state 
evaluation

State s
Next

state s’

Transition Model

Action a

State s Policy 

Transition Model

Action a

Next state s’

Model-free RL:  
Train the STV function 

Model-based  
supervised 
learning to 

assist RL task  

sasRL in operation 

State-Action Separable RL (sasRL) transforms a complex 
RL problem into a simpler RL problem and a simple 
supervised learning problem 



Comparing sasRL with Other RL Algorithms  
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Model-based 
RL Model-free RL sasRL 

Symbol 

Env. 
model 

needed? 
Full env. model   No 

Light-weight 
transition 

model 

Value 
function SAV SAV  STV 

Learning 
bottleneck 

SAV,  
env. model SAV n/a 

Pros 

1) Less 
interactions with 

env. 2) Fuller 
use of data 

1) Simple, direct 
2) No bias 

(caused by env. 
model) 

Address 2 
bottlenecks by: 

1) define & 
employ more 
efficient STV 

function 
2) a light-

weight 
transition 

model 

Cons Env. model 
difficult to train Inefficient 

Examples Dyna-Q 
Q-learning, 

DQN, DDPG, 
SAC 



Comparative Evaluation Results 
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Gird world exit Berzerk Slot machine 

 

§  Remarks on comparative evaluation results 
- sasRL performance is consistently superior  
- PPO (Proximal Policy Optimization Algorithm) fails in all three scenarios 
- SAC (Soft Actor-Critic) produces the most stable results on average 
- DDPG (Deep Deterministic Policy Gradient) outperforms SAC in two cases, 

but is unstable and brittle 



sasRL+Transfer Learning for Environment Changes 
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§  Joint Reinforcement and Transfer Learning (RL+TL) 
-  Consider SDC fragmentation with 2 domains, focusing on data servers 
-  Combine RL (e.g., sasRL) and TL based on generative adversary 

network (GAN) to synthesize data for learning in new environments 
-  Combined RL+TL can significantly speed up RL when operating 

environment changes (e.g., SDC domain fragmentation and re-
connection) 

Note: 
-  The reward is inversely 

proportional to the service 
delay 

-  Real Explorations = 10,000 
data samples 

-  Augmented (RL+TL) or 
Limited Explorations = 100 
data samples (1% of Real 
Exploration sample size) 



Summary of Key Features of sasRL 
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§  RL problem formulation under sasRL: modified 
Markov Reward Process (mMRP), in contrast to 
commonly used MDP 

§  Value function: state-transition-value (STV) 
function, instead of commonly used state-action-
value-function (SAV) function 

§  Convergence property analysis:   STV function’s 
convergence time is              , where T is the 
convergence time for updating SAV function, 
and k is a weighting factor 

§  Model-free learning for the STV function, model-
based learning for the transition model; two 
training process can take place separately (thus 
enables parallelism) 

§  sasRL enables the concurrent optimizations 
of both STV function and policy (e.g., suitable 
for the actor-critic framework)  

§  The STV function, policy and transition model 
for sasRL can be approximated by DNNs  
–  DNN for STV function is easier to train than 

that of SAV function, due to reduced input 
vector space size 

–  The transition model is easy to train via 
mature and standard supervised learning 
routines  

§  In summary, sasRL achieves better 
performance by breaking down an 
inefficiency-prone model-free RL problem into 
a more sample efficient and easier to train 
model-free RL problem and a simple 
supervised learning problem 

O(T 1/k)

<latexit sha1_base64="4nIMaCSkQ/0QyIGLcu/cq8xkBWo=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahXmoihXosevFmhX5hG8tmu2mXbjZhdyOU0H/hxYMiXv033vw3btMctPXBwOO9GWbmeRFnStv2t5VbW9/Y3MpvF3Z29/YPiodHbRXGktAWCXkoux5WlDNBW5ppTruRpDjwOO14k5u533miUrFQNPU0om6AR4L5jGBtpIe7cvMxcS4ms/NBsWRX7BRolTgZKUGGxqD41R+GJA6o0IRjpXqOHWk3wVIzwums0I8VjTCZ4BHtGSpwQJWbpBfP0JlRhsgPpSmhUar+nkhwoNQ08ExngPVYLXtz8T+vF2v/yk2YiGJNBVks8mOOdIjm76Mhk5RoPjUEE8nMrYiMscREm5AKJgRn+eVV0r6sONVK7b5aql9nceThBE6hDA7UoA630IAWEBDwDK/wZinrxXq3PhatOSubOYY/sD5/ADmhj/0=</latexit>



Hierarchical RL for Control of Large System 
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Subsystem 1 
(RL state 
space 1) 

Subsystem 2 
(RL state 
space 2) 

Subsystem K 
(RL state 
space K) 

… 

Hierarchical, global RL of all state spaces 1 to K 

§  SDC is a large system of many subsystems (domains), each subsystem with its 
own state subspace controlled by an RL agent 

§  The global RL agent interacts with subsystem agents to control the whole 
system – tightly-coupled hierarchical RL 

§  Open issues:  
-  Compress states and actions to avoid space explosion for the global agent 
-  Control policies for multi-agents 
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