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Problem Statement
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Multi-objective Path Planning for Autonomous Vehicle

Safety: avoid traffic collisions

Green: choose a less congested path to reduce emission
Fast: choose the fastest path

Distance: choose the shortest path

These objectives are sometimes contradictory
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The Multi-objective Optimization Problem

The multi-objective optimization problem is to solve the minimization or maximization
of N conflicting objective functions f;(x) for i € [1, N], simultaneously, subject to
equality constraint function gj(x) = 0 for j € [1, M] and inequality constraint function
hk(x) < 0 for | € [1, K], where the decision vectors x = (x1, X2, ...x5) "

Solution x; dominates x> if two conditions are satisfied: 1) Vi € [1, N]: fi(x1) < fi(x2),
and 2) 3j € [1, N]: fi(x1) < fi(x2). Solution x; is also called the non-dominated
solution. The goal of the multi-objective optimization problem can also be modeled as
finding the Pareto front that has the set of all non-dominated solutions.
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Multi-objective Path Planning as an Optimization Problem

A road network is modeled as a directed graph G = (V, E), where V is the set of
nodes, and E is the set of edges. A link from node v; and v; € V is shown by e;; € E.
The three objectives are minimization of distance (1), time (f2), and the inverse of
Road Congestion Index (f3).

fi(Distance) Z le,Ve (1)

>(Time) ZteVe (2)
ZLe

AR = =5V 3

SR = e )

e

@ Road Congestion Index (R) is calculated from average vehicle speed, speed limit,
length of road segment, and rule-of-thumb traffic state thresholds.

@ f, and f3 dependent on real-time traffic.
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Multi-objective Path Planning as an Optimization Problem

The minimization optimization of the three objectives are subject to the following
constraints:
ee€ G,VeeP

count(v) =1,Vv € P

ge) = Z CollisionCount, = 0,Ve € P
e

@ (4) ensures that a path P is valid
@ (5) ensures that a path P is loop free
° (

6) ensures that the collision count on the entire path is zero. This constraint is

also dependent on real-time traffic.
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Related Work
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Genetic Algorithms

@ We consider our road network as dynamic and stochastic taking into consideration
the effect of real-time traffic that changes over time.

o Evolutionary algorithms, based on natural and biological systems, have been

adapted to solve dynamic optimization problems. Genetic algorithms is one such
common evolutionary algorithm.

@ Evolutionary meta-heuristics have applications in difficult real-world optimization
problems that possess non-linearity, discreteness, large data sizes, uncertainties in
computation of objectives and constraints, and so on.
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Nondominated Sorting Genetic Algorithm-II (NSGA-II) [Deb et al. 2002]

g-g-g-
| -\
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1. Initial 2. Breed 3. Non-dominated
population population sorting

4. Crowding
distance sorting

— [

Termination Pareto Front

This general framework of NSGA-Il has been applied to solve multi-objective

optimization problems in real world.
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Many-objective Path Finding Using NSGA-II [Liu et al. 2019]

Total Emission Cost (TEC)
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Drawback:

Few work in many-objective path finding has extended the consideration of
node-node

relationship that exists naturally on a dynamic road network, that is, the
temporal and spatial domino effects of traffic congestion.
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The Domino Effect of Congestion [Wang et al. 2019]

Street E
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How are street G, E, F, B, C affected by an accident at the end of street A? One
approach of understanding this relationship is through traffic clustering.
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Affinity Propagation Clustering for Traffic Understanding [Wang et al.
2019]

Road points are clustered based on the traffic flow similarity between each pair.
Affinity Propagation [Frey and Dueck, 2007] is a distributed, message-passing

clustering algorithm and does not require k to be given.
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Solution Methodology
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Improve Flow based Clustering with Speed Performance Index

Speed Performance Index [He et al. 2016], R,, is an intermediate index for road
segments in the calculation of Road Congestion Index (f3). v represents average
vehicle speed in km/h, and V.« represents speed limit on the road segment in km/h.
To normalize SPI, speeding is not considered, and R, is in the range of [0, 100].

B %:/Xmax) x 100 if vehicle count > 0 (7)
71100 otherwise

The traffic state level is considered
@ heavy congestion if R, € [0, 25]
@ mild congestion if R, € (25,50]
e smooth if R, € (50, 75]
e very smooth if R, € (75,100]
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Improve Flow based Clustering with Speed Performance Index

First, we generate a node based SPI.

Algorithm 1 Node Speed Performance Index

Require: road graph G, node i, time step t, SPI Matrix S
Ensure: SPI;
1: ine = G.in_edges(i)
: oute = G.out_edges(i)
- ineSPI, outeSPI = 0
for i, j. d in ine do
ineSPI = ineSPI + S|, j][t]
end for
: for i, j, d in oute do
outeSPI = outSPI + S[i. j][t]
- end for
. SPI; = average(

O 0 DR W

ineSPI outeSPI)
len(ine)’ len(oute)

)
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Improve Flow based Clustering with Speed Performance Index

Second, we generate pair-wise SPI based similarity. The similarity is based on the
assumption that if the target node j is congested, then the similarity between source
node / and j is related to the most congested node on the shortest path from i to j. In
addition, the closer i and j are spatially, the more likely they are similar.

Algorithm 2 Pairwise SPI Similarity

Require: road graph G, origin i, target j, time step t,
SPI Matrix S
Ensure: Sim(i, j)
1: Calculate SPI;
2: p = G.ShortestPath(%, j)
3: minSPI is the smallest SPI on p
{Distance in km}
4: dist = len(p)

C Sim(i i) = — minSPI
50 Sim(i, j) = SPI;xmax(dist,1)
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Improve Flow based Clustering with Speed Performance Index

The message passing Affinity Propagation clustering algorithm has no central control,
does not require the number of clusters to be given, and runs dynamically unless
terminated deliberately.

Algorithm 3 Message Passing Affinity Propagation Traffic
Clustering at Node i

Require: road graph G, time step t
Ensure: cluster id &
1: Initialize availability a; = [0]
2: while not terminated do
3:  Compute pair-wise similarity s
4;  Collect a from adjacent nodes
5 Calculate r;
6 Broadcast r;
7. Receive r from adjacent nodes
8 Calculate a;
9 Broadcast a;
0:  Compute local cluster id k at time ¢
1:

10:
11: end while
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Many-objective Path Finding Constraint Handling

The constraint of collision avoidance is added to the solution selection process of the
main algorithm. Solution x; constrained-dominate x in the following three situations
[Branke et al. 2008]:

@ solution xj is feasible and x» is not.
@ x3 and x» are both infeasible, but x; has a smaller constraint violation.

© x1 and x» are both feasible and solution x; dominates solution x> in the usual
sense.
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Many-objective Path Finding Cluster Incorporation

Assumption: if start node / and j of a directed edge € = i — j are in the same traffic

cluster at time t, then all the incoming edges of i are affected by & in terms of traffic.
Based on this assumption, we take the average of all SPI values of the incoming edges
of i and &, and assign the average value back to these edges.

Before Cluster Incorporation After Cluster Incorporation

e\% SPI;; oSP’f/'° e@‘ o SPI}'O
S P]/b/vo SPl S/TVQ—’G\S‘{{]
°/ Cluster; = Cluster; G Cluster; = Cluster; b

m = AVg(SPI”, SPIai: SPIb])
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Evaluation and Analysis of Results
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Road Network and Traffic Data

The road network of
Aarhus, Denmark [Open
Data Aarhus] is rep-
resented as a graph
composed of 136 nodes
and 443 edges. The traffic
data includes sensor data
recorded on each edge
from February to June
2014.
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Improvement of Traffic Clustering using SPI Based Similarity

TABLE 1. Result Comparison of Flow Based and SPI Based Affinity
Propagation Clustering

Time Flow Based Clustering SPI Based Clustering

Stamp Number | Silhouette] Mean Number | Silhouette] Mean
of Clus- | coeffi- Simi- of Clus- | coeffi- Simi-
ters cient larity ters cient larity

2014-03-01 0 0 0.041 25 0.481 0.710

T07:30:00

2014-03-01 26 0.207 0.313 25 0.480 0.713

T07:35:00

2014-03-01 21 0.174 0.266 25 0.480 0.712

T07:40:00

2014-03-01 22 0.206 0.296 25 0.475 0.710

T07:45:00

SPI based clustering creates much higher values of Silhouette coefficient and mean
similarity consistently.
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Improvement of Traffic Clustering using SPI Based Similarity

SPI Based Clustering for 2014-03-01T07:30:00

The nodes are marked and color coded with their cluster ID’s, and the edges are color
coded with road segment congestion index R;. The color red means heavy congestion
with R; = 0, and green means very smooth with R; = 1.
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Improvement of Multi-objective Path Planning with Clustering

TABLE II. Result Comparison of A*, NSGA-II, and NSGA-II with

Clustering
Path Number Objectives Constrain{ Other
Finding of Metric
Algorithm | Solutions | Average | Average | Average | Average | Average
Dis- Time R Colli- TEC
tance (Min- Inverse sion
(KM) utes)
A% 1 22.825 33.031 1.201 1 0.069
NSGA-1I 100 20.769 57.828 1.132 0 0.075
NSGA- 100 31072 45.457 1.089 0 0.068
I with
Cluster-
ing

Although the clustering based approach generates longer paths in average, the travel
time and congestion are both more optimized than the basic approach. The lower
average value of Total Emission Cost (TEC) also indicates that these solutions are
more traffic smart.
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Improvement of Multi-objective Path Planning with Clustering

Multiobjective Path Planning From Node 4320(Hinnerup) to Node 4551 (Hasselager) Using Clustering
Distance (KM) Time (Minutes) R Inverse

s0.2 59,436 1139

50

1435

The clustering assisted multi-objective path planning produces a diverse variety of
solutions for the decision making process to choose from.
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Improvement of Multi-objective Path Planning with Clustering

@ Blue: the multi-objective
path with minimum distance

@ Yellow: the multi-objective
path with minimum time

o Green: the multi-objective
path with minimum
congestion

@ Red: the single-objective A*
shortest path

@ Nodes belonging to multiple
paths have overlapping colors.
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Conclusion and Future Work
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Conclusion

Our contributions:

@ We improve the multi-objective dynamic path planning algorithm in [Liu et al.
2019] with a new objective for traffic congestion minimization and collision free
constraint.

@ We improve the traffic clustering in [Wang et al. 2019] with SPI [He et al. 2016]
based similarity instead of flow based similarity.

© We propose an innovative technique to integrate the clusters with the
multi-objective optimization algorithm to improve route planning.
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@ Explore other multi-objective evolutionary algorithms for the dynamic path
planning problem, such as multi-objective Ant Colony Optimization (ACO) [Ke et
al. 2013] and multiobjective evolutionary algorithm based on decomposition
(MOEA/D) [Zhang and Li, 2007].

@ Explore traffic prediction techniques such as the emerging Graph Neural Networks
[Cui et al. 2019].

© Simulate the traffic flow and collision in the Simulation of Urban MObility
(SUMO)
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Thank You!

Q>
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