

A Study of In-Vehicular-Network by New IP

Lin Han

Futurewei, USA lin.han@Futurewei.com

Lin Han

- Professional Experience
 - Distinguished Engineer, Futurewei Technologies (2019-Present)
 - Principal Engineer, Huawei U.S.A (2011-2019)
 - Technical Leader, Cisco Systems, U.S.A (1999-2011)
 - Software Engineer, Newbridge Network, Canada (1996-1999)
- Activities and publications
 - Work for "Focus Group on Technologies for Network 2030" in ITU, 2019
 - Member to write "Towards a New Internet for the Year 2030 and Beyond"
 - Member of SubG1: "Network 2030 Architecture Framework for FG-NET2030",
 - Rapporteur of ETSI NGP "Network Layer Multi-Path" WI, 2018
 - Rapporteur of ETSI NGP "New Transport Technology" WI, 2017
 - IEEE WCNC 2020 "New IP Enabled In-Band Signaling for Accurate Latency Guarantee Service"
 - EuCNC 2020 "In-Network Knowledge Reasoning with New IP",
 - IEEE INFOCOMM 2020 Workshop on NewIP "A Framework for Bandwidth and Latency Guaranteed Service in New IP Network",
 - "Support Precise Latency for Network Based AR/VR Applications with New IP", Proceedings of the 13th EAI International Conference on Mobile Multimedia Communications, Mobimedia 2020,
 - IEEE WOCC 2018 "Flow-Level QoS Assurance via IPv6 In-Band Signaling"
 - AFIN 2018, The Tenth International Conference on Advances in Future Internet "A New Congestion Control Algorithm for Bandwidth Guaranteed Networks"
 - More than 20 USA Patents

Current Car vs Future Car

- IVN Introduction and Requirement Analysis
- New IP Introduction
- New IP based New IVN Solution
- Latency Estimation
- Experiments

Current Car: ECU+IVN (LIN, CAN, FLexRay, MOST)

Tesla: 65 (Processors Analysis and Count – TeslaTap)

As of 2019, A single modern luxury vehicle now can integrate as many as 150 ECUs (https://www.eenewsautomotive.com/news/number-automotive-ecus-continues-rise)

Future Car – Autonomous, Remote Control

- Power (EV), Networking (V2X), Lidar, Radar, Many sensors
- Software Driven
- Huge data exchanging with cloud or internally

Source: "6 Key Connectivity Requirements of Autonomous Driving" https://spectrum.ieee.org/transportation/advanced-cars/6-keyconnectivity-requirements-of-autonomous-driving

•Source: "An Overview of 3GPP Cellular Vehicle-to-Everything Standards". November 2017. GetMobile Mobile Computing and Communications 21(3):19-25

5G NETWORKS COMING

TO SUPPORT OUT SMART CARS

https://newsroom.intel.com/editorials/krzanich-the-future-ofautomated-driving/#gs.3t5vyj

Current Car vs Future Car

IVN Introduction and Requirement Analysis

- New IP Introduction
- New IP based New IVN Solution
- Latency Estimation
- Experiments

Legacy Protocols Details

	LIN	CAN	ByteFlight	TTCAN	FlexRay	MOST	TTP/C
General Description	low-speed low-cost	low-cost simple twisted pair widely used	hybrid	low cost twisted pair hybrid	twister pair or optical fiber time/event triggered.	cost-effective data-efficient	time triggered twister pair or optical fiber
Туре	class A	class B class C	class D	class C	class D	class D	Class D
Adapted for	low-level subnets	soft real-time	real-time	soft real-time x-by-wire	hard real-time x-by-wire	multimedia	soft real-time x-by-wire
Network bandwidth	20kbps	1Mbps	10Mbps	1Mbps	10Mbps	25Mbps	25Mbps
Architecture	single- master	multi-master		multi-master	multi-master	multi-master	
Transfer mode	synchronous	asynchronous		synchronous asynchronous	synchronous asynchronous	synchronous asynchronous	synchronous asynchronous
Access control	polling	CSMA	FTDMA	TDMA	TDMA		TDMA
Physical layer	single-wire	dual-wire	optical fiber	dual-wire	optical fiber dual-wire	optical fiber	optical fiber dual-wire
Network topology	bus	bus star	star	bus star	bus star	ring star	bus star

14010 1. Comparison of aggreen communication protocols in the ventue.

© 2010-2017. Vector Informatik GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector. V2.0

Channel B

C1

A1

D2

Example - FlexRay

FlexRay Bus Access

Demo Cluster

Communication Schedule

	Slot	Node	Frame	Channel	Event
	1	Node A	A1	А	
	1	Node A	A1	В	
	2	Node B	B1	А	
ient	2	Node C	C1	В	
agm	3	Nede D	D1	А	
Static Segment	3	Node D	D2	В	
tati	4	Node E	E1	А	
<u>م</u>	4	Node A	A2	В	
	5	Node C	C3	А	
	5	Node B	B2	В	
	6	Node A	A4	А	4
	0	Node B	B3	В	4
Ħ	7	Node C	C4	А	
mei	/	Node D	D3	В	
Seg	8	Node D	D3	А	
Dynamic Segment	0	Node E	E2	В	4
	9	Node B	B4	А	4
	9	Node A	A5	В	
	10	Node E	E3	А	
	10	Node C	C5	В	

B2

A2

B3

E2

vPay Cluster

Latest Industry proposals - TSN

Clock Synchronized Network

Latency requirement for IVN

- No standard yet
- From the driving safety distance:
 - 55MPH/50FT: 0.613s; 110MPH/50FT: 0.306s
- From Human reaction time: 250ms
- 10us was mentioned in paper: <u>https://ieeexplore.ieee.org/document/8315204</u>, but it does not define it. It should be E2E latency for network perspective;
- Use the fastest FlexRay as example,
 - For minimum FlexRay pack size (9bytes), the serialization latency is 9*8/10M = 7.2us;
 - For max Flexray pack size (262bytes), the serialization latency is 262*8/10M = 209us
- Also use FlexRay's cycle to predict, For real-time perspective, if there is any sporadic msg needs to be sent over FlexRay, the max delay by FlexRay is one cycle (about 1ms)
- On paper: https://ieeexplore.ieee.org/document/5981915

Priority Value	Traffic Type	Max. End-to-End Delay [ms]		
3	Control	≤ 10 [16, 5]		
2	Driver Assistance CAM	$\leq 45 [5, 17]$		
1	Navigation	≤ 100		
0	Multimedia	≤ 150 [18]		

So, 1ms E2E delay for any p2p IVN communication is good enough!

Futurewei Technologie

- Current Car vs Future Car
- IVN Introduction and Requirement Analysis
- New IP Introduction
- New IP based New IVN Solution
- Latency Estimation
- Experiments

New IP – New Internet Protocol

New IP for network side \approx 5G NR for radio side Similar approach to solve similar problem

	5G	Future Internet (5G and beyond)
Purpose and Requirements	eMBB mMTC uRLLC	Ultra high through put All things connected High Precision Communication
Solutions	New Radio (5G NR) + (SBA)	New IP
Technologies	New spectrum, MIMO New protocol stack at UE 5G NR QoS Grant Free Dynamic Scheduling	Flexible addressing Network Layer Multiple path New protocol stack at host and UE In-band signaling New queuing and scheduling Qualitative communication Network programmability Intrinsic Security Automation and autonomous networking

True E2E uRLLC = 5G+New IP

- Current Car vs Future Car
- IVN Introduction and Requirement Analysis
- New IP Introduction
- New IP based New IVN Solution
- Latency Estimation
- Experiments

All APP are IP based More and more in-vehicle data exchange: control, monitoring, entertainments

Our Proposals – New IP based In-Vehicle Network

- More and more communication between vehicles, between vehicle and cloud
 - Tele-driving, Self-driving
- The services are different,
 - Control data requires stringent or very short latency

- The number of sensors, MCU and bandwidth grow fast

- Control data not only in vehicle, but also from cloud
- Why New IP

Visions:

•

- Advantages over Legacy protocol and Ethernet in different aspects: Topology, Link Efficiency, End device, etc
- Easier APP development
- Easier V2X integration
- Backward compatible
- Provide different service for different scenarios.
 - In-Vehicle
 - X-car
 - Car and cloud
 - End-to-End

Four types of services for IVN

Service Type	Bandwidth	Latency	Jitter	Packet Loss	Use case
On-time (for Scheduled Traffic)	CIR Provided by APP is guaranteed by network	Most precise, Network guarantees E2E bounded latency	Approximately zero	 Approximately Zero m-path to prevent drop due to physical failure Congestion-free Lossless (due to queuing) 	Synchronous communication: Critical sensor and control data
In-time (for Real-time Traffic)	CIR Provided by APP is guaranteed by network	Minimized, Network guarantees E2E bounded latency	½ of E2E bounded latency	 Minimized Congestion-free Lossless (due to queuing) Only drop due to physical failure 	Asynchronous communication: Critical sensor and control data
Bandwidth Guaranteed (Bandwidth sensitive, but not time critical)	CIR Provided by APP is guaranteed by network Could reach PIR	Less important	Less important	Don't care	Un-critical data Some Infotainment data
Best Effort	Don't care	Don't care	Don't care	Don't care	Other data

Scheduled Traffic: Data size, data start time, data rate are fixed, used for critical sensor data and control in polling mechanism Real-Time Traffic: Data size and rate are fixed, but when the data starts is unknow, used for urgent sensor data change that polling mechanism did not catch.

NewIP Based In-Vehicle Network

NewIP Based In-Vehicle Network topo

There will be at most two hops between IP and any other protocol communication

There will be at most two hops between IP and any other protocol communication

Class Based PQ and its Variation

Futurewei Technologies, Inc.

t0

t1

t2

- Current Car vs Future Car
- IVN Introduction and Requirement Analysis
- New IP Introduction
- New IP based New IVN Solution
- Latency Estimation
- Experiments

E2E Delay Estimation

Page 21

- APP E2E delay $D_{e2e}^{LGS} = RD + PD + \sum_{i=1}^{n} (OD_i^{LGS} + QD_i^{LGS}) + \sum_{s=1}^{m} SD_s^{LGS} + RTD = t1 t0$
 - \circ t0: the time a pack is starting to be leaving the sender's APP process
 - t1: the time a pack is starting to be received at receiver's APP process
 - o RD: Radio delay occurred in radio access, or Air Latency
 - *PD*: Propagation delay
 - ODi : The other delays (pack process, deque, decap, lookup, switch, L2-rewrite, encap, etc) at the i-th hop and host. If underlayer uses bus, hub, extra L2 delay should be considered as other delay.
 - *QDi*: The queuing delay at the i-th hop and sender host (UE)
 - *SDs*: The serialization delay at the s-th link segment (apply to both fixed and radio links), it is related to the packet size and link rate: $SD_S^{LGS} = L^{LGS}/R_S$
 - *RTD*: Retransmission Delay when there is packet loss, Caused by packet loss 1) physical fault or failure in media 2) congestion and queue overflow
- Note
 - The OD are usually and relatively fixed, it is dependent on HW; OD at host are delays caused by pack process, task switch, etc
 - The QD at sender host is similar to hop

Per Queue Delay Estimation for different solutions

- APP E2E delay $D_{e2e}^{LGS} = RD + PD + \sum_{i=1}^{n} (OD_i^{LGS} + QD_i^{LGS}) + \sum_{s=1}^{m} SD_s^{LGS} + RTD = t1 t0$
- Asynchronous Solution:

The maximum packet number in EF Q: $N_{max}^{EF} = \left[R_{in}^{EF} / R_{out} * (L_{max}^{LOW} / L_{max}^{EF} + 1) + 1 \right]$ The maximum latency for EF Q: $D_{max}^{EF} = N_{max}^{EF} * 8 / R_{out}$

The maximum packet number in AF4x Q:

 $N_{max}^{AF4x} = \left[R_{in}^{EF} / R_{out} * (L_{max}^{LOW} / L_{max}^{EF} + 1) + 1 \right] + \left[(R_{in}^{AF4x} / R_{out} * (L_{max}^{LOW} / L_{max}^{AF4x} + 1) + 1) * (R_{in}^{AF4x} / R_{out}) \right]$ The maximum latency for AF4x Q: $D_{max}^{AF4x} = N_{max}^{AF4x} * L^{AF4x} * 8 / R_{out}$ The aggregated ingress rate for EF Q: $R_{in}^{EF} = r_{EF} \sum_{i=1}^{m} cir_i^{EF}$ The aggregated ingress rate for for AF4x Q: $R_{in}^{AF4x} = r_{AF4x} \sum_{i=1}^{n} cir_i^{AF4x}$ Synchronous Solution:

> The maximum packet number in EF Q: $N_{max}^{EF} = \left[\frac{R_{in}^{EF}}{R_{out}} + 1 \right]$ The maximum packet number in AF4x Q: $N_{max}^{AF4x} = \left[\frac{R_{in}^{AF4x}}{R_{out}} + 1 \right]$ The maximum latency for both Q: $D_{max}^{EF} = D_{max}^{AF4x} = T$

- Current Car vs Future Car
- IVN Introduction and Requirement Analysis
- New IP Introduction
- New IP based New IVN Solution
- Latency Estimation
- Experiments

Simulation Setup (by omnetpp)

Simulation Results

Algorithm	Class and traffic	Estimated max number of packet in Egress Q					Estimated	Calculated Total	Estimated
		Host	R0	R1	R2	R3	Total Queuing Latency (us)	Serialization Delay (each hop has 20 us)	Total E2E Delay (us)
PQ+DWRR	EF	0	3	6	3	3	305	100	405
	for ST		(r _{EF} =2)	(r _{EF} =4)	(r _{EF} =1)	(r _{EF} =1)			
	AF4x	0	4	6	4	4	365	100	465
	for RT		(r _{AF4x} =2)	(r _{AF4x} =4)	(r _{AF4x} =1)	(r _{AF4x} =1)			
PQ+DWRR	EF	0	2	2	2	2	162	100	262
+CQ	for ST		(r _{EF} =1)	(r _{EF} =1)	(r _{EF} =1)	(r _{EF} =1)			
	AF4x	0	2	2	2	2	162	100	262
	for RT		(r _{AF4x} =1)	(r _{AF4x} =1)	(r _{AF4x} =1)	(r _{AF4x} =1)			

TABLE 1. The E2E Delay Estimation of ST and RT

1st Algo: The E2E Latency (min=108us, max=391us) for the worst performed ST flow

	Min/Max E2E Delay (us) for carrying ST between	r the worst performed flow H01/H02 to H31/H32	Min/Max E2E Delay (us) for the worst performed flow carrying RT between H01/H02 to H31/H32		
Algorithm	Experiment	Estimation	Experiment	Estimation	
PQ+DWRR	108/391	100/405	278/542	100/465	
PQ+DWRR+CQ	109/152	100/262	169/169	100/262	

TABLE 2. The comparison of experiment result and estimation

^{1.} 2nd Algo: The E2E Latency (min=109us, max=152us) for Futurewei Technologies, Inc. the worst performed ST flow Page 25

- New IP based IVN can achieve the targets of latency, jitter and packet loss.
- It can be alternative solution for legacy IVN protocols and TSN.
- It has obvious advantages over other solutions.
 - L2 independent, higher link utilization, more flexible topo, simpler and lower cost
 - Easier for APP development
 - Easier for V2X integration
- New IVN is key part of V2X and will be integrated with future Internet.