Paper ID: 60018

Friction Invariant Object Reconstruction Using a Vibrissa-inspired Tactile Sensor Concept

Lukas Merker¹, Joachim Steigenberger¹, Carsten Behn²

¹Technische Universität Ilmenau, Germany ²Schmalkalden University of Applied Sciences, Germany

e-mail: lukas.merker@tu-ilmenau.de

Short Resume of the Presenter

Lukas Merker received the B.Sc. degree (2015) and the M.Sc. degree (2017) in Mechanical Engineering from Technische Universität Ilmenau. Since 2017, he has been working as a Ph.D student at the Department of Mechanical Engineering at Technische Universität Ilmenau. His research interests include the development of biologically inspired tactile sensors for object shape recognition.

Authors of the Paper

Lukas Merker, M.Sc.

Prof. Joachim Steigenberger

Prof. Carsten Behn

1. Introduction – Future Goal

biological paragon

- vibrissae enable animals to determine different object features: size, orientation, shape, surface texture
- sensing information only in follicle/support of each vibrissa

technical application example

highly flexible tactile sensors (complementing optical sensors)

- for object shape scanning and reconstruction
- path planning for rovers

biological paragon

mechanical model

Slide 02 Friction Invariant Object Reconstruction Using a Vibrissa-inspired Tactile Sensor Concept 21.07

TECHNISCHE

technical vibrissa (probe)

mechanical model

- nonlinear Euler-Bernoulli bending rod
- length L
- one-sided clamped at x₀
- isotropic, homogeneous Hooke's material
- constant Young's modulus E and second moment of area I_z

dimensionless treatment

- introducing the following units of measure:
 - \circ [length] := L,
 - \circ [force] := $\frac{EI_z}{L^2}$,
 - $\circ \quad [moment] \coloneqq \frac{EI_z}{L}$

object

mechanical model

- rigid body
- strictly convex profile contour function, parameterized by angle $\tilde{\alpha} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \mapsto \left(\xi(\tilde{\alpha}), \eta(\tilde{\alpha})\right)$
- here: circular object contour (only for example)

contact

- strict convexity \Rightarrow only one contact point
- Coulomb friction:

$$\vec{f} = \vec{f}_n + \vec{f}_t$$

= $f \cdot [\sin(\alpha) \vec{e}_x - \cos(\alpha) \vec{e}_y]$

$$\mu = \frac{\left|\vec{f_t}\right|}{\left|\vec{f_n}\right|} = \tan(\zeta)$$

scanning process

mechanical model

- plane scanning sweep
- quasi-static process
- translational displacement of the clamping position x₀ (input variable)

deformation of the rod

mechanical model

$$x'(s) = \cos(\varphi(s))$$

$$y'(s) = \sin(\varphi(s))$$

$$\varphi'(s) = \kappa(s)$$

$$\kappa'(s) = f \cdot \cos(\varphi(s) - \alpha)$$

- system of nonlinear ordinary differential equations (ODE) of first order
- used in two steps... in the following

Slide 06 Friction Invariant Object Reconstruction Using a Vibrissa-inspired Tactile Sensor Concept 21.07.2021

Slide 07 Friction Invariant Object Reconstruction Using a Vibrissa-inspired Tactile Sensor Concept 21.07.2021

Slide 09 Friction Invariant Object Reconstruction Using a Vibrissa-inspired Tactile Sensor Concept 21.07.2021

CC TECHNISCHE UNIVERSITÄT

reaction forces (known from Step 1 or from measurements):

known quantities: $x_0, \varphi_0, f_x, f_y, m_z$

$$f = \sqrt{f_x^2 + f_y^2}, \qquad \alpha = -\arctan\left(\frac{f_x}{f_y}\right)$$

initial-value problem (IVP)

$x'(s) = \cos(\varphi(s))$	$x(0) = x_0$
$y'(s) = \sin(\varphi(s))$	y(0)=0
$\varphi'(s) = \kappa(s)$	$\varphi(0) = \varphi_0$
$\kappa'(s) = \mathbf{f} \cdot \cos(\varphi(s) - \alpha)$	$\kappa(0) = -m_z$

[Scholz and Rahn 2004]:

- numerical integration of the IVP
- using an event function
 - > cancels further computation if $\kappa(s_1) = 0$ (termination condition)

[Will et. al. 2018]:

- analytical integration of the IVP
- using an analytic expression

$$s_1 = -\frac{1}{\sqrt{f}} \int_{\frac{\pi}{2}}^{\tilde{\alpha}} \frac{1}{\sqrt{\sin(t-\tilde{\alpha})}} dt$$

3. Simulation Results – Step 1

Slide 11 Friction Invariant Object Reconstruction Using a Vibrissa-inspired Tactile Sensor Concept

21.07.2021 TECHNISCHE UNIVERSITÄT ILMENAU

3. Simulation Results – Step 1

TECHNISCHE

ILMENAU

- all support reactions are affected by friction
- increasing friction coeffictient results in a longer contact phase
- the friction coefficient has little impact on the transitions between tip and tangential contacts

Slide 11 Friction Invariant Object Reconstruction Using a Vibrissa-inspired Tactile Sensor Concept 21.07.2021

3. Simulation Results – Step 2

Slide 12 Friction Invariant Object Reconstruction Using a Vibrissa-inspired Tactile Sensor Concept

\RI

3. Simulation Results – Step 2

[Scholz and Rahn 2004]:

Slide 13 Friction Invariant Object Reconstruction Using a Vibrissa-inspired Tactile Sensor Concept

- regardless of the friction coefficient, the reconstruction error lies within numerical boundaries
- large reconstruction errors, resulting from errors of the contact position s_1

21.07.2021

TECHNISCHE

ILMENAU

[Will et. al. 2018]:

4. Reconstructing Friction Parameters

$$\kappa'(s) = f \cdot \cos(\varphi(s) - \alpha)$$

$$\kappa(0) = -m_{0z}$$

$$\kappa(s_1) = 0$$

$$\varphi(0) = \frac{\pi}{2}$$

$$\varphi(s_1) = \varphi_1$$

$$\varphi_1 = \alpha - \arcsin\left(\frac{m_{0z}^2 - 2f_{0y}}{2f}\right) = \tilde{\alpha} + \zeta - \beta$$

tangential contact:

$$\zeta = \beta = \arcsin\left(\frac{m_{0z}^2 - 2f_{0y}}{2f}\right)$$

4. Reconstructing Friction Parameters

$$\varphi_1 = \alpha - \arcsin\left(\frac{m_{0z}^2 - 2f_{0y}}{2f}\right) = \tilde{\alpha} + \zeta - \beta$$

tangential contact:

$$\zeta = \beta = \arcsin\left(\frac{m_{0z}^2 - 2f_{0y}}{2f}\right)$$

Slide 15 Friction Invariant Object Reconstruction Using a Vibrissa-inspired Tactile Sensor Concept 21.07.2021

technische Universität ILMENAU

5. Summary & Outlook

Summary

- adapting a vibrissa-inspired sensor model for object contour scanning and reconstruction including Coulomb's friction
- friction affects the support reactions during ٠ scanning
- the recontruction error is invariant against friction
- analytical condition: reconstructing friction parameters during tangential contact

Outlook

- using different kinds of objects and distances
- validating the mentioned findings in experiments
- adapting the model for spatial problems ٠
- conical and pre-curved rods

+ - + - Breaking News - + - + -

Latest biological observations show that animals misuse other body-parts as tactile sensors.

21.07.2021

TECHNISCHE

6. References

- B. Mitchinson et al., "Active vibrissal sensing in rodents and Marsupials," Phil. Trans. R. Soc., vol. 366, pp. 3037 3048, 2011.
- [2] C. Will, C. Behn, and J. Steigenberger, "Object contour scanning using elastically supported technical vibrissae," ZAMM J. Appl. Math. Mec., vol. 98, pp. 289-305, 2018.
- [3] G. R. Scholz and C. D. Rahn, "Profile sensing with an actuated whisker," IEEE Trans. Rob. Autom., vol. 20, pp. 124-127, 2004.

hints for further references:

- [4] L. Merker, J. Steigenberger, R. Marangoni, and C. Behn, "A vibrissainspired highly flexible tactile sensor: scanning 3D object surfaces providing tactile images," Sensors, vol. 21, 2021.
- [5] L. Merker, S. J. Fischer Calderon, M. Scharff, J. H. A. Miranda, and C. Behn, "Effects of Multi-Point Contacts during Object Contour Scanning Using a Biologically-Inspired Tactile Sensor," Sensors, vol. 20, 2020.
- [6] T. J. Prescott, B. Mitchinson, and R. A. Grant, "Vibrissal behavior and function," Scholarpedia, vol. 6, pp. 6642, 2011.

