Analysis of Trustworthiness in Machine Learning and Deep Learning

AUTHORS: MOHAMED KENTOUR, JOAN LU
 PRESENTER: MOHAMED KENTOUR
 University of Huddersfield, UK
 Email: mohamed.kentour@hud.ac.uk

Presenter's short Bio

 MSc Software Engineering and information Processing, University of Boumerdes, Algeria(2018)

MSc Computing, University of Huddersfield, UK (2020)

 Currently doing a PhD in Computer Science and Informatics, University of Huddersfield, UK

Website: <u>KentMoh/GitHub.uk</u>

Research Interest

Mohamed Kentour & Joan Lu

Plan

Mohamed Kentour & Joan Lu

Introduction

- Overview
- Objectives

Background

- Interpretable vs Explainable ML models
- Case of DL
- Limits

Insights

- Model decomposition
- •Bring users' perceptual metrics into the learning flow

Demonstration

Legal concerns

Conclusion and future work

University of Huddersfield / IARIA

4

1. Introduction

Data deluge and decision making [1]

- Performance vs transparency
- Need for transparency

Data-science life cycle [2]

 Trustworthiness within ML and DL life cycle

Users' behavior changing

Users' cognitive level

Mohamed Kentour & Joan Lu

Figure 1. Data-science life cycle.

1. Introduction

1.1 Overview

- New data sampling
- New perceptual dimension
- Adjust to the users' requirements

1.2 Objectives

- □ Analyse literature models
- Show the impact of the perceptual metrics on models' performance
- Increase the trustworthiness of the model through a demonstration

Mohamed Kentour & Joan Lu

2. Background

2.1 Interpretable ML

- Post deployed analysis
- -> Challenge
 - Bridge learning theory with quantifiable metrics

-> Solutions

- Matrix factorization [knowledge, method]
- Fuzzy System and ontology for decision trees
- Invoke explainable models (LIME, COVAR) to measure quantifiable metrics

Mohamed Kentour & Joan Lu

2. Background

2.2. Explainable ML models

LIME / SP-LIME [3]

- Goes beyond a single trust of a prediction (tradeoff approximation/complexi _ty)
- Sub-modular Pick LIME to study features impact on explanations

IBM 360° [4]

More flexible: separating obvious explanation from blackboxes (local/global variables)

DARPA [5]

 Highest accuracy and lowest complexity by mapping from high-lev el to low-lev el features which is part of learning process (backpropagation)

Mohamed Kentour & Joan Lu

2.2. Case of DL

(1) Generative modeling
(2) Post-hoc techniques

Mohamed Kentour & Joan Lu

Figure 7. Explainable DL models.

2.3. Limits

Although explainable models show high performance, they fail to infer missing concepts.

Data sparsity within perceptual metrics remains an issue.

Users may express a changing behavior regarding any explainable model.

10

Mohamed Kentour & Joan Lu

3. Insight

- Model decomposition (Figure 6) allows a link between explanability and a learning theory.
 - Credit assignment path.
 - Abductive learning, etc.
- To justify new features (trustworthy metrics) based on their impact on the whole performance.
 - ▶ I.e., active neurons in neural networks; feature selection, etc.

Mohamed Kentour & Joan Lu

4. Demonstration

Importance of handling users' changing behavior in a recommender system.

-> Does the recommender explain or support a user changing behavior?

-> Solution:

CHR (Constraint handling rules)

:- chr_constraint actor/1, actress/1.

:- chr_constraint movie/10, recommendation/3.

movie(_,_,_,_,X,_) ==> actor(X); actress(X).

recommendation(_, _, A)
==> movie(_,_,A,_,_,)

Model's resilience against undeclared instances

?- movie(_,_,_,'drama, comedy',_,_,_,'Mr Bean',_,_).
false.

?- movie(_,_,_,'drama, comedy',_,_,'Mr Bean',_,_).
actor('Mr Bean'),

?- recommendation(male, sad, A), movie(_,_,_A,_,_,'Mr Bean',_,_).
false.

?- recommendation(male, sad, A), movie(_,_,_A,_,_,'Mr Bean',_,_).
A = 'drama, comedy',
actor('Mr Bean'),

Mohamed Kentour & Joan Lu

5. Legal concerns

Exposure of explainable models and data privacy.

- How far shall we explain?
- How far shall we contextually adapt data?
- Explanability vs adversarial attacks.
 - e.g., IBM (predicted behabvior of "WayBlazer app") [6]
- Fairness and the need to introduce new regulatory metrics [7].

6. Conclusion and future research

□ User-centered analysis.

Gap: explanability/interpretability.

Reasearch perspective

- Logical reasoning for model certainty.
 - > Perceptual metrics could be formalized before being trained.
 - > Perceptual metrics could be typed and attributed for model exceptions.
- > Al policy [8] for an easy disparate behavior deletion.

Mohamed Kentour & Joan Lu

University of Huddersfield / IARIA

14

References

[1] D. F. Reding and J. Eaton, Science and Technology Trends, Exploring the S&T Edge NATO Science & Technology Organization. 2020. Retrieved from http://www.sto.nato.int/. Accessed on 21/02/2021 22:10.

[2] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asi, and B. Yu,"Definitions, methods, and applications in interpretable machine learning". PNAS, 116 (44) 22071-22080, 2019.

[3] M. T. Ribeiro, S. Singh, and C. Guestren, "Why Should I Trust You? Explaining the Predictions of Any Classifier". KDD 2016 San Francisco, CA, USA. doi: http://dx.doi.org/10.1145/2939672.2939778, 2016.

[4] A. Mojsilovic, "Introducing AI Explainability 360. Retrieved from https://www.ibm.com/blogs/research/2019/08/ai-explainablility-360/, 2019. Visited on 03/02/2019 01:12.

[5] M. Turek, "Explainable Artificial Intelligence (XAI). DEFENCE ADVANCED RESEARCH PROJECT AGENCY. Retrieved from https://www.darpa.mil/program/explainable-artificial-intelligence, 2019.Visited on 06/03/202020:11.

[6] I. Portilla, "WayBlazer Cognitive Computing Application Powered by IBM Watson & Neo4j". GraphConnectEurope, 2016. Accessed from WayBlazer Cognitive Computing Application Powered by IBM Watson & Neo4j | LaptrinhX. Visited on 18/01/2019.

[7] UK Gov, "General Data Protection Regulation (GDPR)", 2020. Data protection - GOV.UK (www.gov.uk). Accessed on 02/05/2020 14:25.

[8] O. Dowden, "New strategy to unleash the transformational power of Artificial Intelligence". Retrieved from https://www.gov.uk/government/organisations/office-for-artificial-intelligence, 12 March 2021. Visited on 25/04/2021 22:45

Mohamed Kentour & Joan Lu

16

Thanks for listening

Mohamed Kentour & Joan Lu