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1. Introduction
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❑ Data deluge and decision

making [1]

▪ Performance vs transparency

• Need for transparency

❑ Data-science life cycle [2]

▪ Trustworthiness within ML and DL 
life cycle

❑ Users' behavior changing

❑ Users' cognitive level

Figure 1. Data-science life cycle.
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1. Introduction
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1.1 Overview
❑ New data sampling

❑ New perceptual dimension

❑ Adjust to the users' requirements

1.2 Objectives

❑ Analyse literature models

❑ Show the impact of the perceptual 
metrics on models' performance

❑ Increase the trustworthiness of the 
model through a demonstration
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Figure 2. Perceptual metric's inclusion 

within ML life cycle.



2. Background
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2.1 Interpretable ML

❑ Post deployed analysis

-> Challenge

 Bridge learning theory with quantifiable 
metrics

-> Solutions

 Matrix factorization [knowledge, 

method]

 Fuzzy System and ontology for decision 
trees

 Invoke explainable models (LIME, 

COVAR) to measure quantifiable 

metrics
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Figure 3. 
Interpretable
vs Explainable ML.

Interpretable
technique

Explainable
technique

Figure 4. 
Interpretable trust 
dimensions and 
their impact on 
users' reaction.



2. Background

2.2. Explainable ML models

LIME / SP-LIME [3]

• Goes beyond a single trust 

of a prediction ( trade-
off approximation/complexi
_ty)

• Sub-modular Pick LIME 

to study features impact 
on explanations

IBM 360° [4]

• More flexible: 

separating obv ious 
explanation from black-
boxes 

(local/global variables)

DARPA [5]

• Highest accuracy 

and lowest complexity 
by mapping from high-level 
to low-level features which 

is part of learning 
process (backpropagation)
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Figure 5. Users' 
reactions on 
explainable 
models.



2. Background
2.2. Case of DL
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 (1) Generative modeling

 (2) Post-hoc techniques
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Figure 6. Explainable DL

"Computational units".

Figure 7. Explainable DL

models.



2. Background
2.3. Limits

 Although explainable models show high performance, they fail to 
infer missing concepts.

 Data sparsity within perceptual metrics remains an issue.

 Users may express a changing behavior regarding any explainable 
model.
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3. Insight

 Model decomposition (Figure 6) allows a link between explanability
and a learning theory.

 Credit assignment path.

 Abductive learning, etc.

 To justify new features (trustworthy metrics) based on their impact on 
the whole performance.

 I.e., active neurons in neural networks; feature selection, etc.
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4. Demonstration
Importance of handling 

users' changing behavior in 
a recommender system.
-> Does the recommender explain or 
support a user changing behavior ?

-> Solution: 

CHR (Constraint handling rules)

:- chr_constraint actor/1, actress/1.

:- chr_constraint movie/10, 
recommendation/3.

❑ movie(_,_,_,_,_,_,_,X,_,_) ==> actor(X); actress(X).

❑ recommendation(_, _, A) 
==> movie(_,_,_,A,_,_,_,_,_,_)

Model's resilience against

undeclared instances

12

Mohamed Kentour & Joan Lu University of Huddersfield / IARIA



5. Legal concerns

 Exposure of explainable models and data privacy.

 How far shall we explain?

 How far shall we contextually adapt data?

 Explanability vs adversarial attacks.

 e.g., IBM (predicted behabvior of "WayBlazer app") [6]

 Fairness and the need to introduce new regulatory metrics [7].

13

Mohamed Kentour & Joan Lu University of Huddersfield / IARIA



6. Conclusion and future research

❑ User-centered analysis.

❑ Gap: explanability/interpretability.

Reasearch perspective

➢ Logical reasoning for model certainty.
➢ Perceptual metrics could be formalized before being trained.
➢ Perceptual metrics could be typed and attributed for model exceptions.

➢ AI policy [8] for an easy disparate behavior deletion.
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