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1. Introduction
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❑ Data deluge and decision

making [1]

▪ Performance vs transparency

• Need for transparency

❑ Data-science life cycle [2]

▪ Trustworthiness within ML and DL 
life cycle

❑ Users' behavior changing

❑ Users' cognitive level

Figure 1. Data-science life cycle.
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1. Introduction
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1.1 Overview
❑ New data sampling

❑ New perceptual dimension

❑ Adjust to the users' requirements

1.2 Objectives

❑ Analyse literature models

❑ Show the impact of the perceptual 
metrics on models' performance

❑ Increase the trustworthiness of the 
model through a demonstration
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Figure 2. Perceptual metric's inclusion 

within ML life cycle.



2. Background
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2.1 Interpretable ML

❑ Post deployed analysis

-> Challenge

 Bridge learning theory with quantifiable 
metrics

-> Solutions

 Matrix factorization [knowledge, 

method]

 Fuzzy System and ontology for decision 
trees

 Invoke explainable models (LIME, 

COVAR) to measure quantifiable 

metrics
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Figure 3. 
Interpretable
vs Explainable ML.

Interpretable
technique

Explainable
technique

Figure 4. 
Interpretable trust 
dimensions and 
their impact on 
users' reaction.



2. Background

2.2. Explainable ML models

LIME / SP-LIME [3]

• Goes beyond a single trust 

of a prediction ( trade-
off approximation/complexi
_ty)

• Sub-modular Pick LIME 

to study features impact 
on explanations

IBM 360° [4]

• More flexible: 

separating obv ious 
explanation from black-
boxes 

(local/global variables)

DARPA [5]

• Highest accuracy 

and lowest complexity 
by mapping from high-level 
to low-level features which 

is part of learning 
process (backpropagation)
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Figure 5. Users' 
reactions on 
explainable 
models.



2. Background
2.2. Case of DL
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 (1) Generative modeling

 (2) Post-hoc techniques
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Figure 6. Explainable DL

"Computational units".

Figure 7. Explainable DL

models.



2. Background
2.3. Limits

 Although explainable models show high performance, they fail to 
infer missing concepts.

 Data sparsity within perceptual metrics remains an issue.

 Users may express a changing behavior regarding any explainable 
model.
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3. Insight

 Model decomposition (Figure 6) allows a link between explanability
and a learning theory.

 Credit assignment path.

 Abductive learning, etc.

 To justify new features (trustworthy metrics) based on their impact on 
the whole performance.

 I.e., active neurons in neural networks; feature selection, etc.
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4. Demonstration
Importance of handling 

users' changing behavior in 
a recommender system.
-> Does the recommender explain or 
support a user changing behavior ?

-> Solution: 

CHR (Constraint handling rules)

:- chr_constraint actor/1, actress/1.

:- chr_constraint movie/10, 
recommendation/3.

❑ movie(_,_,_,_,_,_,_,X,_,_) ==> actor(X); actress(X).

❑ recommendation(_, _, A) 
==> movie(_,_,_,A,_,_,_,_,_,_)

Model's resilience against

undeclared instances
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5. Legal concerns

 Exposure of explainable models and data privacy.

 How far shall we explain?

 How far shall we contextually adapt data?

 Explanability vs adversarial attacks.

 e.g., IBM (predicted behabvior of "WayBlazer app") [6]

 Fairness and the need to introduce new regulatory metrics [7].
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6. Conclusion and future research

❑ User-centered analysis.

❑ Gap: explanability/interpretability.

Reasearch perspective

➢ Logical reasoning for model certainty.
➢ Perceptual metrics could be formalized before being trained.
➢ Perceptual metrics could be typed and attributed for model exceptions.

➢ AI policy [8] for an easy disparate behavior deletion.
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Thanks for 
listening
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