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Introduction

» Overview
* Objectives

Background

* Interpretable vs Explainable ML models
» Case of DL
o Limits

dle]g Insights

* Model decomposition
*Bring users' perceptual metrics into the learning flow
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1. Infroduction

O Data deluge and decision
making [1]
=  Performance vs transparency

Need for fransparency

0 Data-science life cycle [2]

= Trustworthiness within ML and DL
life cycle

QO Users' behavior changing
QO Users' cognitive level
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Figure 1. Data-science life cycle.
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1. Infroduction

<7 #*¥  behaviour, sentiment,
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Figure 2. Perceptual metric's inclusion

Increase the trustworthiness of the > .
within ML life cycle.

model through a demonstration
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2. Background

2.1 Interpretable ML

0 Post deployed analysis
-> Challenge

» Bridge learning theory with quantifiable
meftrics

-> Solutions

» Maitrix factorization [knowledge,
method]

» Fuzzy System and ontology for decision
trees

» Invoke explainable models (LIME,
COVAR) to measure quantifiable
metrics
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2. Background 8

2.2. Explainable ML models
LIME / SP-LIME [3] IBM 360° [4] DARPA [5]

Goes beyond a single trust - More flexible: - Highest accuracy

of a prediction ( trade- separating obvious and lowest complexity

off approximation/complexi explanation from black- by mapping from high-lev el

_ty) bboxes to low-lev el features which
(local/global v ariables) is part of learning

Sub-modular Pick LIME
to study featuresimpact
on explanations

process (backpropagation)

I [ sers' intention

I Y Figure 5. Users'

behaviour reactions on
Users' explainable

confidence models.
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2. Background

2.2. Case of DL

1) Generative modeling

> |
» (2) Post-hoc techniques
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2. Background 10

2.3. Limits

» Although explainable models show high performance, they fail to
infer missing concepts.

» Datasparsity within perceptual metrics remains an issue.

» Users may express a changing behaviorregarding any explainable
model.
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3. Insight 1

» Modeldecomposition (Figure 6) allows a link between explanability
and a learning theory.

» Credit assignment path.

» Abducftive learning, efc.

» To justify new features (trustworthy metrics) based on theirimpact on
the whole performance.

» |l.e., active neuronsin neural networks; feature selection, etc.
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4. Demonstration 12

Importance of handling L |
users' changing behaviorin ~ Models resilience against

a recommender system. undeclared instances

-> Does the recommender explain or ?- movie( , , ,'drama, comedy', , , ,'Mr Bean', , ).
support a user changing behavior ¢

?- movie( , , ,'drama, comedy', , , ,'Mr Bean', , ).

L i C
Solution actor('Mr Bean'),

CHR (Constraint handlingrules)
- chr_constraint actor/1, actress/1.

- chr_constraint movie/10,

recommendgﬂon/& ?- recommendation(male, sad, A), movie(_,_,_,A,_,_,_,'Mr Bean',_, ).
r = I
movie( ., . ., .. . ., X, ., )==> actor(X); actress(X). - -
(i X ) ! (X) ?- recommendation(male, sad, A), movie( , , ,A, , , ,'Mr Bean', , ).
0 recommendation(_, _, A) A = 'drama, comedy',
==>movie(_._._A_____._) actor('Mr Bean'),
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5. Legal concerns 13

» Exposure of explainable models and data privacy.
» How farshallwe explaine
» How farshall we contextually adapt data?
» Explanability vs adversarial attacks.
» e.g.,IBM (predicted behabvior of "WayBlazer app") [6]
» Fairness and the need to intfroduce new regulatory metrics [7].
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6. Conclusion and future research 14

0 User-centered analysis.

0 Gap: explanabllity/interpretability.

Reasearch perspective

» Logical reasoning for model certainty.
» Perceptual metrics could be formalized before being trained.
» Perceptual metrics could be typed and attributed for model exceptions.

» Al policy [8] for an easy disparate behaviordeletion.
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