

Datasys Congress 2021

PREDICTION SOFTWARE QUALITY FROM DEVELOPMENT AND RELEASE FACTORS

Authors: Rishita Mullapudi, Tajmilur Rahman, Joshua Nwokeji

Presenter:

Tajmilur Rahman PhD rahman007@gannon.edu

TAJMILUR RAHMAN PHD

Tajmilur Rahman, PhD, is an **assistant professor** in the department of Computer and Information Science at **Gannon University** in Erie, Pennsylvania, United States. Dr. Rahman received his doctorate degree in 2018 from Concordia University, Montreal QC, Canada.

His overarching research interest is to **investigate release engineering practices** in software systems. His research interests also include **software engineering** & **data science**, understanding the significance of software architecture for **long lasting software systems**, and providing tool support to the community to nurture **software feature architecture**. He is also interested in studies on software engineering education.

Dr. Rahman is the first author who extracted *feature-architecture*. His currently ongoing research works include, software release management, software quality prediction in rapid-release, predict potential architectural drift, and software engineering education.

OUTLINE

- Software quality
- Importance of software quality
- Quality in terms of post release bugs
- Shorter version release cycles
- Development and release factors
- Data
- Methodology
- Preliminary results

SOFTWARE QUALITY

- Functional Quality
- Quality in Performance
- User Experience (UI) Quality
- User Experience Post Release Issues

SOFTWARE QUALITY - POST RELEASE BUGS

- Software crash on the users' end
- Bugs reported by users
 - Example: Browser crash-report

SOFTWARE QUALITY - POST RELEASE BUGS

- Software crash on the users' end
- Bugs reported by users
 - Browser crash-report
 - Operating System crash report

SOFTWARE QUALITY - POST RELEASE BUGS

 Reports are automatically collected from the end user

SOFTWARE QUALITY - WHY IMPORTANT

- Indicates the quality of the released version
- Affects unser satisfaction
- Adds work load into the future sprints
- Additional effort slows down desired pace

SHORTER VERSION RELEASE CYCLE

- Promised delivery of new version
- Every certain period of time
- Typically days or weeks
- Limited time for testing
- May lead to more post release bugs

SHORTER VERSION RELEASE CYCLE

- Better to predict post release bugs
- Help developers be cautious
- Help prioritizing tests

- Number of Commits
- 2. Number of Churn per File
- 3. Number of Churn per Test File
- 4. Number of Churn per Configuration File
- 5. Number of Last Minute Churns
- 6. Number of Bug-fix Commits

Number of Commits

- Indicates the volume of work done in a release
- Indicates activeness of the developers

Number of Churn per File

- Indicates the volume of work in each file
- Indicates cluster of development effort
 - Amount of work for feature development
 - High churn per may be a few features received a lot of work
 - Low churn per file may be enhancement or modifications or small feature

Number of Churn per Test File

- Indicates the volume of testing effort
- Also indicates presence of many features

Number of Churn per Configuration File

- Indicates the volume of configuration effort
- Multiple platform release
- Infrastructure change

Number of Churn at the Last Moment

- Indicates rush among the developers
- Last moment ~ Last one month of changes
- If the last commit before the release commit is May 31, then changes during May 01 - May 31 are considered as last minute changes

Bug-fix Changes

- Amount of changes to fix bugs
- Identified from the commit messages
 - o Patterns used: "Bug", "Fix", "Patch" etc.

DATA

- Bug data
 - Eclipse Equinox bugs
 - https://bugs.eclipse.org/bugs/xmlrpc.cgi
- Historycal repository data
 - Github repository for Eclipse development
 - o https://github.com/eclipse/rt.equinox.p2

DATA

Version #	commit	# churn	# file	Conf Churn	# LM Churn	# TF Churn	m Bugs	M Bugs
3.0	10k	20k	500	20	10k	200	180	54
3.1	15k	25k	400	12	12k	100	223	78
3.2	12k	22k	450	21	15k	300	124	98

CLASSIFICATION

```
5 Decision Classes:
• Quality L1
    • Quality magnitude 0 - 5
• Quality L2
    • Quality magnitude 51 - 100
• Quality L3
    • 101 - 150
• Quality L4
    • 151 - 200
• Quality L5
    • 201 +
```

QUALITY MAGNITUDE

Indicates the magnitude of post release bugs for a release.

The more high-impact bugs, the higher the magnitude is.

$$magnitudeM = hb\epsilon hb > 0 : hb * (mb + Mb) * 100/Tb$$

- hb <- High-impact bugs
 - Blocking and critical bugs
 - Will be applied only if it is > 0
- mb <- Minor bugs
- Mb <- Major bugs
- Tb <- Total bugs

QUALITY MAGNITUDE

```
Magnitude of release version 3.4.0   
Critical + Blocking bugs = 19   
Minor + Major bugs = 26     m3.4 = 19*(26*100/644) = 76.7   
Magnitude = 76.7
```

Falls under **Quality Level 2** [51 - 100]

QUALITY MAGNITUDE

Version #	Min	Maj	Crit	Block	Total Bugs	M
3.4.0	6	20	12	7	644	76.7
3.5.0	14	17	5	8	349	115.0
3.6.0	3	11	5	1	180	47.0

Quality magnitude for release version 3.4.0, 3.5.0, 3.6.0

CLASSIFICATION MODELS

- Decision Tree
- Random Forest
- Naïve Bayes
- Support Vector Machine

METHOD AT A GLANCE

IN PROGRESS

- 61% of the work is done
- Will apply K-Means clustering to find the classification thresholds
- Will construct the decision tree, random forest and other classification
- Compare their performance

THANK YOU FOR BEING MY AUDIENCE

Questions or comments are always welcome

Tajmilur Rahman PhD

rahman007@gannon.edu